首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15109篇
  免费   1077篇
  16186篇
  2023年   98篇
  2022年   204篇
  2021年   399篇
  2020年   286篇
  2019年   366篇
  2018年   416篇
  2017年   381篇
  2016年   580篇
  2015年   862篇
  2014年   896篇
  2013年   1107篇
  2012年   1260篇
  2011年   1154篇
  2010年   800篇
  2009年   713篇
  2008年   834篇
  2007年   807篇
  2006年   768篇
  2005年   703篇
  2004年   672篇
  2003年   552篇
  2002年   588篇
  2001年   146篇
  2000年   106篇
  1999年   142篇
  1998年   144篇
  1997年   85篇
  1996年   78篇
  1995年   72篇
  1994年   78篇
  1993年   68篇
  1992年   64篇
  1991年   49篇
  1990年   58篇
  1989年   47篇
  1988年   46篇
  1987年   34篇
  1986年   38篇
  1985年   40篇
  1984年   43篇
  1983年   42篇
  1982年   33篇
  1981年   37篇
  1980年   28篇
  1979年   33篇
  1977年   25篇
  1976年   21篇
  1975年   24篇
  1973年   21篇
  1972年   21篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
993.
In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.  相似文献   
994.
Despite considerable interest in temporal and spatial variation of phenotypic selection, very few methods allow quantifying this variation while correctly accounting for the error variance of each individual estimate. Furthermore, the available methods do not estimate the autocorrelation of phenotypic selection, which is a major determinant of eco‐evolutionary dynamics in changing environments. We introduce a new method for measuring variable phenotypic selection using random regression. We rely on model selection to assess the support for stabilizing selection, and for a moving optimum that may include a trend plus (possibly autocorrelated) fluctuations. The environmental sensitivity of selection also can be estimated by including an environmental covariate. After testing our method on extensive simulations, we apply it to breeding time in a great tit population in the Netherlands. Our analysis finds support for an optimum that is well predicted by spring temperature, and occurs about 33 days before a peak in food biomass, consistent with what is known from the biology of this species. We also detect autocorrelated fluctuations in the optimum, beyond those caused by temperature and the food peak. Because our approach directly estimates parameters that appear in theoretical models, it should be particularly useful for predicting eco‐evolutionary responses to environmental change.  相似文献   
995.
996.

Background

Simple models inspired by processes shaping consumer-resource interactions have helped to establish the primary processes underlying the organization of food webs, networks of trophic interactions among species. Because other ecological interactions such as mutualisms between plants and their pollinators and seed dispersers are inherently based in consumer-resource relationships we hypothesize that processes shaping food webs should organize mutualistic relationships as well.

Methodology/Principal Findings

We used a likelihood-based model selection approach to compare the performance of food web models and that of a model designed for mutualisms, in reproducing the structure of networks depicting mutualistic relationships. Our results show that these food web models are able to reproduce the structure of most of the mutualistic networks and even the simplest among the food web models, the cascade model, often reproduce overall structural properties of real mutualistic networks.

Conclusions/Significance

Based on our results we hypothesize that processes leading to feeding hierarchy, which is a characteristic shared by all food web models, might be a fundamental aspect in the assembly of mutualisms. These findings suggest that similar underlying ecological processes might be important in organizing different types of interactions.  相似文献   
997.
Some potato species require a short-day (SD) photoperiod for tuberization, a process that is negatively affected by gibberellins (GAs). Here we report the isolation of StGA3ox2, a gene encoding a GA 3-oxidase, whose expression is increased in the aerial parts and is repressed in the stolons after transfer of photoperiod-dependent potato plants to SD conditions. Over-expression of StGA3ox2 under control of constitutive or leaf-specific promoters results in taller plants which, in contrast to StGA20ox1 over-expressers previously reported, tuberize earlier under SD conditions than the controls. By contrast, StGA3ox2 tuber-specific over-expression results in non-elongated plants with slightly delayed tuber induction. Together, our experiments support that StGA3ox2 expression and gibberellin metabolism significantly contribute to the tuberization time in strictly photoperiod-dependent potato plants.  相似文献   
998.

Blossom-end rot (BER) is a physiological disorder believed to be triggered by low Ca2+ content in the distal fruit tissue. However, many other factors can also determine fruit susceptibility to BER. It is possible that during fruit growth, Ca2+ imbalance can increase membrane leakiness, which may trigger the accumulation of reactive oxygen species, leading to cell death. Brassinosteroids are a class of plant hormones involved in stress defenses, specially increasing the activity of antioxidant enzymes and the accumulation of antioxidant compounds, such as ascorbic acid. The objective of this study was to understand the mechanisms by which 24-epibrassinolide (EBL) reduces fruit susceptibility to BER. Tomato plants ‘BRS Montese’ were cultivated in a greenhouse and were weekly sprayed with water (control) or EBL (0.01 µM) after full bloom. Plants and fruits were evaluated at 15 days after pollination (DAP). According to the results, EBL treatment inhibited BER development, increased fruit diameter, length, and fresh weight. EBL-treated fruit showed higher concentrations of soluble Ca2+ and lower concentrations of cell wall-bound Ca2+. EBL-treated fruit also had higher concentrations of ascorbic acid and lower concentrations of hydrogen peroxide, compared to water-treated fruit. EBL treatment increased the activity of the three main antioxidant enzymes known as ascorbate peroxidase, catalase, and superoxide dismutase. According to the results, EBL treatment maintained higher soluble Ca2+ and antioxidant capacity, reducing fruit susceptibility to BER.

  相似文献   
999.
Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10)) and BMP2 (rs4813802, P = 4.65×10(-11)). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8)) and rs11632715 (P = 2.30×10(-10)). As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.  相似文献   
1000.
The Na(+)/Ca(2+) exchanger, a major mechanism by which cells extrude calcium, is involved in several physiological and physiopathological interactions. In this work we have used the dialyzed squid giant axon to study the effects of two oxidants, SIN-1-buffered peroxynitrite and hydrogen peroxide (H(2)O(2)), on the Na(+)/Ca(2+) exchanger in the absence and presence of MgATP upregulation. The results show that oxidative stress induced by peroxynitrite and hydrogen peroxide inhibits the Na(+)/Ca(2+) exchanger by impairing the intracellular Ca(2+) (Ca(i)(2+))-regulatory sites, leaving unharmed the intracellular Na(+)- and Ca(2+)-transporting sites. This effect is efficiently counteracted by the presence of MgATP and by intracellular alkalinization, conditions that also protect H(i)(+) and (H(i)(+) + Na(i)(+)) inhibition of Ca(i)(2+)-regulatory sites. In addition, 1 mM intracellular EGTA reduces oxidant inhibition. However, once the effects of oxidants are installed they cannot be reversed by either MgATP or EGTA. These results have significant implications regarding the role of the Na(+)/Ca(2+) exchanger in response to pathological conditions leading to tissue ischemia-reperfusion and anoxia/reoxygenation; they concur with a marked reduction in ATP concentration, an increase in oxidant production, and a rise in intracellular Ca(2+) concentration that seems to be the main factor responsible for cell damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号