首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11199篇
  免费   816篇
  12015篇
  2023年   64篇
  2022年   148篇
  2021年   289篇
  2020年   179篇
  2019年   240篇
  2018年   288篇
  2017年   269篇
  2016年   389篇
  2015年   622篇
  2014年   629篇
  2013年   794篇
  2012年   959篇
  2011年   855篇
  2010年   606篇
  2009年   559篇
  2008年   633篇
  2007年   630篇
  2006年   603篇
  2005年   552篇
  2004年   528篇
  2003年   453篇
  2002年   465篇
  2001年   107篇
  2000年   67篇
  1999年   99篇
  1998年   122篇
  1997年   75篇
  1996年   66篇
  1995年   60篇
  1994年   68篇
  1993年   55篇
  1992年   47篇
  1991年   34篇
  1990年   42篇
  1989年   28篇
  1988年   30篇
  1987年   24篇
  1986年   20篇
  1985年   28篇
  1984年   35篇
  1983年   25篇
  1982年   26篇
  1981年   30篇
  1980年   19篇
  1979年   19篇
  1977年   13篇
  1976年   12篇
  1975年   18篇
  1973年   14篇
  1967年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The Crc protein is involved in the repression of several catabolic pathways for the assimilation of some sugars, nitrogenated compounds, and hydrocarbons in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolic repression). Crc appears to be a component of a signal transduction pathway modulating carbon metabolism in pseudomonads, although its mode of action is unknown. To better understand the role of Crc, the proteome profile of two otherwise isogenic P. putida strains containing either a wild-type or an inactivated crc allele was compared. The results showed that Crc is involved in the catabolic repression of the hpd and hmgA genes from the homogentisate pathway, one of the central catabolic pathways for aromatic compounds that is used to assimilate intermediates derived from the oxidation of phenylalanine, tyrosine, and several aromatic hydrocarbons. This led us to analyze whether Crc also regulates the expression of the other central catabolic pathways for aromatic compounds present in P. putida. It was found that genes required to assimilate benzoate through the catechol pathway (benA and catBCA) and 4-OH-benzoate through the protocatechuate pathway (pobA and pcaHG) are also negatively modulated by Crc. However, the pathway for phenylacetate appeared to be unaffected by Crc. These results expand the influence of Crc to pathways used to assimilate several aromatic compounds, which highlights its importance as a master regulator of carbon metabolism in P. putida.  相似文献   
992.
The antitumor drug mithramycin consists of a polyketide chromophore glycosylated with a trisaccharide and a disaccharide. Two post-polyketide methylations take place during mithramycin biosynthesis. One of these methylations has been shown to be very relevant for biological activity, that is the introduction of a methyl group at aromatic C-7. We have purified to 282- fold the MtmMII methyltransferase involved in this reaction. The protein is a monomer, and results from kinetic studies were consistent with a model for the enzyme acting via a compulsory order mechanism. The enzyme showed high substrate specificity and was unable to operate on structurally closely related molecules. Structural predictions suggest that the molecule is integrated by two domains, an essentially all alpha-amino domain and an alpha/beta-carboxyl domain displaying a variation of a Rossmann-fold containing the cofactor binding site. Although 7-demethyl-mithramycin did not show any biological activity, it was able to reach the nucleus of eukaryotic cells, with subsequent binding to DNA. Mithramycin and 7-demethylmithramycin were able to form similar complexes with Mg(2+), although their respective DNA binding isotherms were very different. The dinucleotide binding model fit well the isotherms recorded for both compounds, predicting that the C-7 methyl group was essential for high affinity binding to specific GC and CG sequences. Considering previous structural studies, we propose that this effect is performed by positioning the group in the floor of the minor groove, allowing the interaction with the third sugar moiety of the trisaccharide, d-mycarose, which is involved in sequence selectivity.  相似文献   
993.
The plasma membrane calcium ATPase (PMCA) actively transports Ca(2+) from the cytosol to the extra cellular space. The C-terminal segment of the PMCA functions as an inhibitory domain by interacting with the catalytic core. Ca(2+)-calmodulin binds to the C-terminal segment and stops inhibition. Here we showed that residue Asp(170), in the putative "A" domain of human PMCA isoform 4xb, plays a critical role in autoinhibition. In the absence of calmodulin a PMCA containing a site-specific mutation of D170N had 80% of the maximum activity of the calmodulin-activated PMCA and a similar high affinity for Ca(2+). The mutation did not change the activation of the PMCA by ATP. Deletion of the C-terminal segment further downstream of the calmodulin-binding site led to an additional increase in the maximal activity of the mutant, which suggests that the mutation did not affect the inhibition because of this portion of the C-terminal segment. The calmodulin-activated PMCA was more sensitive to vanadate inhibition than the autoinhibited enzyme. In contrast, inhibition of the D170N mutant required higher concentrations of vanadate and was not affected by calmodulin. Despite its higher basal activity, the mutant had an apparent affinity for calmodulin similar to that of the wild type enzyme, and its rate of proteolysis at the C-terminal segment was still calmodulin-dependent. Altogether these results suggest that activation by mutation D170N does not involve the displacement of the calmodulin-binding autoinhibitory domain from the catalytic core and may arise directly from changes in the accessibility to the calcium-binding residues of the pump.  相似文献   
994.
The Plasmodium falciparum acidic-basic repeat antigen represents a potential malarial vaccine candidate. One of this protein's high activity binding peptides, named 2150 ((161)KMNMLKENVDYIQKNQNLFK(180)), is conserved, non-immunogenic, and non-protection-inducing. Analogue peptides whose critical binding residues (in bold) were replaced by amino-acids having similar mass but different charge were synthesized and tested to try to modify such immunological properties. These analogues' HLA-DRbeta1* molecule binding ability were also studied in an attempt to explain their biological mechanisms and correlate binding capacity and immunological function with their three-dimensional structure determined by (1)H NMR. A 3(10) distorted helical structure was identified in protective and immunogenic peptide 24922 whilst alpha-helical structure was found for non-immunogenic, non-protective peptides having differences in alpha-helical position. The changes performed on immunogenic, protection-inducing peptide 24922 allowed it to bind specifically to the HLA-DRbeta1*0301 molecule, suggesting that these changes may lead to better interaction with the MHC Class II-peptide-TCR complex rendering it immunogenic and protective, thus suggesting a new way of developing multi-component, sub-unit-based anti-malarial vaccines.  相似文献   
995.
Biochemical, luminescence and mass spectroscopy approaches indicate that Trp-151 (helix V) plays an important role in hydrophobic stacking with the galactopyranosyl ring of substrate and that Glu-269 (helix VIII) is essential for substrate affinity and specificity. The x-ray structure of the lactose permease (LacY) with bound substrate is consistent with these conclusions and suggests that a possible H-bond between Glu-269 and Trp-151 may play a critical role in the architecture of the binding site. We have now probed this relationship by exploiting the intrinsic luminescence of a single Trp-151 LacY with various replacements for Glu-269. Mutations at position 269 dramatically alter the environment of Trp-151 in a manner that correlates with binding affinity of LacY substrates. Furthermore, chemical modification of Trp-151 with N-bromosuccinimide indicates that Glu-269 forms an H-bond with the indole N. It is concluded that 1) an H-bond between the indole N and Glu-269 optimizes the formation of the substrate binding site in the inward facing conformation of LacY, and 2) the disposition of the residues implicated in sugar binding in different conformers suggests that sugar binding by LacY involves induced fit.  相似文献   
996.
997.
998.
T cells from cancer patients are often functionally impaired, which imposes a barrier to effective immunotherapy. Most pronounced are the alterations characterizing tumor-infiltrating T cells, which in renal cell carcinomas includes defective NF-kappaB activation and a heightened sensitivity to apoptosis. Coculture experiments revealed that renal tumor cell lines induced a time-dependent decrease in RelA(p65) and p50 protein levels within both Jurkat T cells and peripheral blood T lymphocytes that coincided with the onset of apoptosis. The degradation of RelA/p50 is critical for SK-RC-45-induced apoptosis because overexpression of RelA in Jurkat cells protects against cell death. The loss of RelA/p50 coincided with a decrease in expression of the NF-kappaB regulated antiapoptotic protein Bcl-xL at both the protein and mRNA level. The disappearance of RelA/p50 protein was mediated by a caspase-dependent pathway because pretreatment of T lymphocytes with a pan caspase inhibitor before coculture with SK-RC-45 blocked RelA and p50 degradation. SK-RC-45 gangliosides appear to mediate this degradative pathway, as blocking ganglioside synthesis in SK-RC-45 cells with the glucosylceramide synthase inhibitor, PPPP, protected T cells from tumor cell-induced RelA degradation and apoptosis. The ability of the Bcl-2 transgene to protect Jurkat cells from RelA degradation, caspase activation, and apoptosis implicates the mitochondria in these SK-RC-45 ganglioside-mediated effects.  相似文献   
999.
Protein intermediates in equilibrium with native states may play important roles in protein dynamics but, in cases, can initiate harmful aggregation events. Investigating equilibrium protein intermediates is thus important for understanding protein behaviour (useful or pernicious) but it is hampered by difficulties in gathering structural information. We show here that the phi-analysis techniques developed to investigate transition states of protein folding can be extended to determine low-resolution three-dimensional structures of protein equilibrium intermediates. The analysis proposed is based solely on equilibrium data and is illustrated by determination of the structure of the apoflavodoxin thermal unfolding intermediate. In this conformation, a large part of the protein remains close to natively folded, but a 40 residue region is clearly unfolded. This structure is fully consistent with the NMR data gathered on an apoflavodoxin mutant designed specifically to stabilise the intermediate. The structure shows that the folded region of the intermediate is much larger than the proton slow-exchange core at 25 degrees C. It also reveals that the unfolded region is made of elements whose packing surface is more polar than average. In addition, it constitutes a useful guide to rationally stabilise the native state relative to the intermediate state, a far from trivial task.  相似文献   
1000.
Here, we analyzed histological findings and parasite burden in chronic Neospora caninum infection in BALB/c and ICR mice and studied the correlation between lesion severity and parasite load in brain. To obtain a better understanding of the infection, we examined the influence of various host pathogen factors. Groups of outbred (ICR) and inbred (BALB/c) mice were inoculated using several NC-1 parasite doses (4 x 10(5), 10(6), and 5 x 10(6) tachyzoites), inoculation routes (intraperitoneal and subcutaneous), and 3 immunosuppressive treatments (methylprednisolone, cyclophosphamide, and vinblastine). Lesion severity was analyzed in the liver, lung, heart, and brain tissues, and parasite load was measured by real-time polymerase chain reaction in brain tissue. The results indicated more severe cerebral lesions and higher brain parasite burdens in inbred than in outbred mice. Hepatic tissue was the primary lesion site in immunosuppressed ICR mice. We also observed that increased inoculum size was reflected in greater lesion severity and a higher cerebral parasite load. No difference was observed with respect to inoculation route. The study also showed an association between brain parasite burden and severity of cerebral lesions in BALB/c mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号