首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18060篇
  免费   1247篇
  2023年   105篇
  2022年   191篇
  2021年   447篇
  2020年   288篇
  2019年   373篇
  2018年   478篇
  2017年   407篇
  2016年   605篇
  2015年   996篇
  2014年   958篇
  2013年   1304篇
  2012年   1506篇
  2011年   1394篇
  2010年   941篇
  2009年   869篇
  2008年   1030篇
  2007年   1022篇
  2006年   991篇
  2005年   919篇
  2004年   855篇
  2003年   736篇
  2002年   747篇
  2001年   156篇
  2000年   103篇
  1999年   158篇
  1998年   188篇
  1997年   141篇
  1996年   97篇
  1995年   115篇
  1994年   109篇
  1993年   91篇
  1992年   79篇
  1991年   79篇
  1990年   69篇
  1989年   55篇
  1988年   60篇
  1987年   44篇
  1986年   32篇
  1985年   45篇
  1984年   69篇
  1983年   40篇
  1982年   47篇
  1981年   53篇
  1980年   42篇
  1979年   35篇
  1978年   25篇
  1977年   23篇
  1976年   22篇
  1975年   24篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
A kinetic framework is developed to describe enzyme activity and stability in two-phase liquid-liquid systems. In particular, the model is applied to the enzymatic production of benzaldehyde from mandelonitrile by Prunus amygdalus hydroxynitrile lyase (pa-Hnl) adsorbed at the diisopropyl ether (DIPE)/aqueous buffer interface (pH = 5.5). We quantitatively describe our previously obtained experimental kinetic results (Hickel et al., 1999; 2001), and we successfully account for the aqueous-phase enzyme concentration dependence of product formation rates and the observed reaction rates at early times. Multilayer growth explains the early time reversibility of enzyme adsorption at the DIPE/buffer interface observed by both enzyme-activity and dynamic-interfacial-tension washout experiments that replace the aqueous enzyme solution with a buffer solution. The postulated explanation for the unusual stability of pa-Hnl adsorbed at the DIPE/buffer interface is attributed to a two-layer adsorption mechanism. In the first layer, slow conformational change from the native state leads to irreversible attachment and partial loss of catalytic activity. In the second layer, pa-Hnl is reversibly adsorbed without loss in catalytic activity. The measured catalytic activity is the combined effect of the deactivation kinetics of the first layer and of the adsorption kinetics of each layer. For the specific case of pa-Hnl adsorbed at the DIPE/buffer interface, this combined effect is nearly constant for several hours resulting in no apparent loss of catalytic activity. Our proposed kinetic model can be extended to other interfacially active enzymes and other organic solvents. Finally, we indicate how interfacial-tension lag times provide a powerful tool for rational solvent selection and enzyme engineering.  相似文献   
972.
A new experimental technique, employing a continuous stirred-tank reactor, for studying enzyme kinetics in the presence of inhibitor-contaminated substrate is described. The proposed method is simulated mathematically for competitive, uncompetitive, and mixed-type noncompetitive inhibition. The step-by-step experimental procedure is described, as is the necessary data analysis for determining the kinetic parameters. Differences in system response for enzyme inhibition by excess substrate and by an impurity are illustrated, and a stability analysis of the system is performed.  相似文献   
973.
Exhaustive extraction of the endosperm from the seed of Gleditsia triacanthos using water at room temperature and 50 degrees C left a residue, which was further extracted at 95 degrees C. Precipitation of this extract with 2-propanol yielded major amounts of galactomannan components, while the supernatant was mainly composed of arabinose-rich constituents. Two fractions were obtained by anion-exchange chromatography. The fraction that eluted with water is an arabinan with (1-->5) alpha-L linkages and branching mainly on C-2, accompanied with equal amounts of a low-galactose galactomannan oligosaccharide, and a small proportion of a beta-(1-->4)-galactan. The fraction eluted with an increased ionic strength consists mainly of a similar arabinan, and lower proportions of a high-galactose galactomannan, galactan, and protein. The arabinan moiety in both fractions was characterized by chemical analysis and 1D and 2D NMR spectroscopic techniques.  相似文献   
974.
The sulfated, methylated galactan isolated from the red seaweed Bostrychia montagnei, showed an unusually narrow structural dispersion. This agaran has the defining linear backbone of alternating 3-linked beta-D-galactopyranosyl units and 4-linked alpha-L-galactopyranosyl and 3,6-anhydrogalactopyranosyl residues. The D-units have C-6 methylation, C-6 single stubs of xylopyranosyl and minor to trace amounts of (possible) C-6 linked single stubs of galactopyranosyl. These units are mainly sulfated on C-4 with lesser sulfation at C-6 and minor at C-2. The L-residues are mainly methylated on C-2 of the 3,6-anhydrogalactopyranosyl and sulfated on C-3 of the L-galactopyranosyl; minor amounts of 2,3- and 3,6-disulfated and 2-O-methyl or 2-O-glycosyl 3-sulfated L-galactopyranosyl were also found.  相似文献   
975.
Glucosamines are common components of many biologically important oligosaccharides. Reported is a systematic evaluation of glucosamine phosphates and trichloroacetimidates as glycosylating agents for the efficient construction of beta-(1 --> 6) glucosamine linkages. A set of differentially protected glucosamine donors incorporating a host of amine protecting groups, including 2-phthaloyl, benzyloxycarbonyl (Z), trichloroetheoxycarbonyl (Troc) and trichloroacetyl (TCA) protective groups, were prepared. Donors were initially evaluated for reactivity and protecting group compatibility in a solution-phase study with a model 6-hydroxyl galactose acceptor. Based on these results, glucosamine donor 10 was selected for the solution-phase synthesis of a beta-(1 --> 6)-glucosamine pentasaccharide. Finally, building block 10 proved well suited for use in the automated solid-phase synthesis of a repeating unit trisaccharide. An assessment of glucosamine phosphate donors as potential glycosylating agents for a variety of glucosamine linkages is also discussed.  相似文献   
976.
Valor LM  Mulet J  Sala F  Sala S  Ballesta JJ  Criado M 《Biochemistry》2002,41(25):7931-7938
The role of the large intracellular loop of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in the expression of functional channels was studied. For this purpose, systematic deletions and substitutions were made throughout the loop and the ability of the mutated alpha7 subunits to support expression of functional nAChRs at the Xenopus oocyte membrane was tested. Surface nAChR expression was abolished upon removal of sequences at two regions, a 29-amino acid segment close to the N-terminus of the loop (amino acids 297-325) and adjacent to the third transmembrane region and an 11-amino acid segment near the fourth transmembrane region. Some residues (amino acids 317-322) within the 29 amino acids N-terminal segment could be substituted by others but not deleted without loss of expression, suggesting that a certain structure, determined by the number of amino acids rather than by their identity, has to be maintained in this region. The contiguous sequence M323 K324 R325 did not tolerate deletions and substitutions. Removal of the rest of the cytoplasmic loop was not deleterious; even higher expression levels (2-4-fold) were obtained upon large deletions of the loop (Delta399-432 and Delta339-370). High expression levels were observed provided that a minimal sequence of three amino acids (E371, G372, and M373) was present. In addition, some electrophysiological properties of mutant nAChRs were modified. Substitution of the EGM sequence by other protein segments produced a variety of effects, but, in general, insertions were not well tolerated, suggesting the existence of tight structural restrictions in the large cytoplasmic region of the rat alpha7 subunit.  相似文献   
977.
Most signal transduction pathways central to development are not shared by plants and animals. Such is the case of the Wingless/Wnt signaling pathway, whose components play key roles in metazoan pattern formation and tumorigenesis, but are absent in plants, with the exception of SHAGGY/GSK3, a cytoplasmic protein kinase represented in the genome of Arabidopsis thaliana by a family of 10 AtSK genes for which mutational evidence is scarce. Here, we describe the characterization of mutant alleles of the Arabidopsis ULTRACURVATA1 (UCU1) gene, the two strongest of which dramatically reduce cell expansion along the proximodistal axis, dwarfing the mutant plants, whose cells expand properly across but not along most organs. Proximodistal expansion of adaxial (dorsal) and abaxial (ventral) leaf cells exhibits a differential dependence on UCU1 function, as suggested by the leaves of ucu1 mutants, which are rolled spirally downward in a circinate manner. We have positionally cloned the UCU1 gene, which encodes an AtSK protein involved in the cross-talk between auxin and brassinosteroid signaling pathways, as indicated by the responses of ucu1 mutants to plant hormones and the phenotypes of double mutants involving ucu1 alleles.  相似文献   
978.
979.
The multivalent pseudopeptide HB-19 that binds the cell-surface-expressed nucleolin is a potent inhibitor of human immunodeficiency virus (HIV) infection by blocking virus particle attachment and thus anchorage in the plasma membrane. We show that cross-linking of surface-bound HB-19A (like HB-19 but with a modified template) results in aggregation of HB-19A with surface nucleolin. Consistent with its specific action, HB-19A binding to different types of cells reaches saturation at concentrations that have been reported to result in inhibition of HIV infection. By using Chinese hamster ovary mutant cell lines, we confirm that the binding of HB-19A to surface nucleolin is independent of heparan and chondroitin sulfate proteoglycans. In vitro generated full-length nucleolin was found to bind HB-19A, whereas the N-terminal part containing the acidic amino acid stretches of nucleolin did not. The use of various deletion constructs of the C-terminal part of nucleolin then permitted the identification of the extreme C-terminal end of nucleolin, containing repeats of the amino acid motif, RGG, as the domain that binds HB-19A. Finally, a synthetic peptide corresponding to the last C-terminal 63 amino acids was able to inhibit HIV infection at the stage of HIV attachment to cells, thus suggesting that this domain could be functional in the HIV anchorage process.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号