首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   2篇
  2022年   4篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2014年   3篇
  2013年   10篇
  2012年   9篇
  2011年   15篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   7篇
  2001年   4篇
  2000年   4篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
  1969年   4篇
  1968年   1篇
  1967年   5篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有177条查询结果,搜索用时 31 毫秒
51.
d-amino acid oxidase is the prototype of flavin-dependent oxidases. The recent resolution of its 3D structure has provided an explanation for several of its properties and has led to a substantial revision of the mechanism of d-amino acid dehydrogenation, with significant implications for the general uderstanding of flavin-dependent catalysis  相似文献   
52.
A proposed sequence of events for cadmium-induced mitochondrial impairment   总被引:6,自引:0,他引:6  
Cadmium is a very important environmental toxicant, the cytotoxicity mechanism of which is likely to involve mitochondria as a target. In the present study we addressed the cause/effect relationship between the multiple cadmium-induced responses involving the mitochondrial energetic and oxidative status. Assays were performed with succinate-energized rat liver mitochondria incubated with 5 microM CdCl(2) for 0-25 min, in the absence or presence, respectively, of N-ethylmaleimide (NEM), butylhydroxytoluene (BHT), ruthenium red (RR), and cyclosporine A+ADP. A sequence of events accounting for cadmium-induced mitochondrial impairment is proposed, beginning with an apparent interaction of Cd(2+) with specific protein thiols in the mitochondrial membrane, which stimulates the cation's uptake via the Ca(2+) uniporter, and is followed by the onset of mitochondrial permeability transition (MPT); both effects dissipate the transmembrane electrical potential (Deltapsi), causing uncoupling, followed by an early depression of mitochondrial ATP levels. The respiratory chain subsequently undergoes inhibition, generating reactive oxygen species which together with iron mobilized by the cation, cause late, gradual mitochondrial membrane lipid peroxidation.  相似文献   
53.
Reaction of spinach leaves ferredoxin-NADP+ reductase (NADPH:ferredoxin oxidoreductase, EC 1.6.7.1) with alpha-dicarbonyl compounds results in a biphasic loss of activity. The rapid phase yields modified enzyme with about 30% of the original activity, but no change in the Km for NADPH. Only partial protection against inactivation is provided by NADP+, NADPH and their analogs, whereas ferredoxin affords complete protection. The reductase inactivated to 30% of original activity shows a loss of about two arginyl residues, whereas only one residue is lost in the NADP+-protected enzymes. The data suggest that the integrity of at least two arginyl residues are requested for maximal activity of ferredoxin-NADP+ reductase: one residue being located near the NADP+-binding site, the other presumably situated in the ferredoxin-binding domain.  相似文献   
54.
A cDNA clone for the preprotein of spinach ferredoxin:NADP+ reductase has been modified to allow the expression in Escherichia coli of the mature flavoprotein form the lacks the transit peptide. An expression vector, pFNR1, was constructed by subcloning the fragment into the plasmid pDS12/RBSII, SphI. In the crude extracts of transformed cells after induction, two active holoproteins of 35 kDa and 32 kDa, respectively, were found. The 32-kDa protein, purified by immunoaffinity chromatography, was found to lack the first 28 residues of the spinach protein sequence and to have a methionine as the N-terminal residue instead of Val29. A new expression plasmid, pFNR2, was obtained by in vitro mutagenesis of the codon GTG for Val29 to the synonymous GTT; in this case, only the 35-kDa protein was expressed by transformed cells. Both the 35-kDa and 32-kDa enzymes were purified and characterized. All the properties analyzed of the cloned 35-kDa enzyme were very similar to those of the spinach flavoprotein. The 32-kDa form showed the same catalytic efficiency of the spinach enzyme as a diaphorase but its interaction with oxidized ferredoxin was partially impaired.  相似文献   
55.
1. The kinetic characteristics of the ATP hydrolysis by membrane-bound and Triton X-100 solubilized mitochondrial ATPase, during the isoproterenol-induced cardiomyopathy, were investigated. 2. An increase in the inhibitory action of the oligomycin, a decrease in the affinity of the ATP binding sites and an increase of both activation energy and rate of thermal inactivation were observed for mitochondrial ATPase. 3. The possibility that the changes described are related to the modifications of the active configuration of mitochondrial ATPase, during the isoproterenol-induced cardiomyopathy, is discussed.  相似文献   
56.
Ravasio S  Curti B  Vanoni MA 《Biochemistry》2001,40(18):5533-5541
Glutamate synthase is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of the L-glutamine amide group to C(2) of 2-oxoglutarate, forming two molecules of L-glutamate. The bacterial enzyme is an alphabeta protomer, which contains one FAD (on the beta subunit, approximately 50 kDa), one FMN (on the alpha subunit, approximately 150 kDa), and three different Fe-S clusters (one 3Fe-4S center on the alpha subunit and two 4Fe-4S clusters at an unknown location). To address the problem of the intramolecular electron pathway, we have measured the midpoint potential values of the flavin cofactors and of the 3Fe-4S cluster of glutamate synthase in the isolated alpha and beta subunits and in the alphabeta holoenzyme. No detectable amounts of flavin semiquinones were observed during reductive titrations of the enzyme, indicating that the midpoint potential value of each flavin(ox)/flavin(sq) couple is, in all cases, significantly more negative than that of the corresponding flavin(sq)/flavin(hq) couple. Association of the two subunits to form the alphabeta protomer does not alter significantly the midpoint potential value of the FMN cofactor and of the 3Fe-4S cluster (approximately -240 and -270 mV, respectively), but it makes that of FAD some 40 mV less negative (approximately -340 mV for the beta subunit and -300 mV for FAD bound to the holoenzyme). Binding of the nonreducible NADP(+) analogue, 3-aminopyridine adenine dinucleotide phosphate, made the measured midpoint potential value of the FAD cofactor approximately 30-40 mV less negative in the isolated beta subunit, but had no effect on the redox properties of the alphabeta holoenzyme. This result correlates with the formation of a stable charge-transfer complex between the reduced flavin and the oxidized pyridine nucleotide in the isolated beta subunit, but not in the alphabeta holoenzyme. Binding of L-methionine sulfone, a glutamine analogue, had no significant effect on the redox properties of the enzyme cofactors. On the contrary, 2-oxoglutarate made the measured midpoint potential value of the 3Fe-4S cluster approximately 20 mV more negative in the isolated alpha subunit, but up to 100 mV less negative in the alphabeta holoenzyme as compared to the values of the corresponding free enzyme forms. These findings are consistent with electron transfer from the entry site (FAD) to the exit site (FMN) through the 3Fe-4S center of the enzyme and the involvement of at least one of the two low-potential 4Fe-4S centers, which are present in the glutamate synthase holoenzyme, but not in the isolated subunits. Furthermore, the data demonstrate a specific role of 2-oxoglutarate in promoting electron transfer from FAD to the 3Fe-4S cluster of the glutamate synthase holoenzyme. The modulatory role of 2-oxoglutarate is indeed consistent with the recently determined three-dimensional structure of the glutamate synthase alpha subunit, in which several polypeptide stretches are suitably positioned to mediate communication between substrate binding sites and the enzyme redox centers (FMN and the 3Fe-4S cluster) to tightly control and coordinate the individual reaction steps [Binda, C., et al. (2000) Structure 8, 1299-1308].  相似文献   
57.
Triton X-100 solubilized bone matrix-induced alkaline phosphatase   总被引:1,自引:0,他引:1  
1. Solubilized and membrane-bound alkaline phosphatase showed Michaelis-Menten behavior in a wide range of different substrate concentrations. 2. Membrane-bound alkaline phosphatase has a molecular weight of 130,000 and its minimum active configuration comprises two identical subunits of about 65,000. 3. The two forms of the enzyme behave similarly with respect to NaCl, urea and guanidine HCl. 4. Catalytic groups have pK values of about 8.5 and 9.7 for both membrane-bound and solubilized enzyme.  相似文献   
58.
59.
60.
Abstract

Cistus clusii Dunal: a note on nomenclature and distribution with special reference to the station of Lesina (Foggia). — The recent finding of Cistus clusii Dunal at Torre del Fortore (Pietramaura) near Lesina (Puglia - Southern Italy), besides confirming its presence in the region, indicates that its diffusion is larger than it was thought. This species is in danger of disappearing because the larger part of the station is included within a lotting area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号