首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3266篇
  免费   213篇
  3479篇
  2023年   14篇
  2022年   31篇
  2021年   52篇
  2020年   40篇
  2019年   58篇
  2018年   79篇
  2017年   55篇
  2016年   84篇
  2015年   133篇
  2014年   147篇
  2013年   235篇
  2012年   250篇
  2011年   255篇
  2010年   158篇
  2009年   123篇
  2008年   223篇
  2007年   224篇
  2006年   184篇
  2005年   150篇
  2004年   154篇
  2003年   160篇
  2002年   159篇
  2001年   27篇
  2000年   18篇
  1999年   25篇
  1998年   28篇
  1997年   34篇
  1996年   21篇
  1995年   30篇
  1994年   22篇
  1993年   22篇
  1992年   25篇
  1991年   23篇
  1990年   29篇
  1989年   12篇
  1988年   12篇
  1987年   13篇
  1986年   10篇
  1985年   13篇
  1984年   16篇
  1983年   8篇
  1982年   12篇
  1981年   17篇
  1980年   12篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   7篇
  1971年   4篇
排序方式: 共有3479条查询结果,搜索用时 15 毫秒
61.
Chronic calorie restriction has been known for decades to prevent or retard cancer growth, but its weight-loss effect and the potential problems associated with combining it with chemotherapy have prevented its clinical application. Based on the discovery in model organisms that short term starvation (STS or fasting) causes a rapid switch of cells to a protected mode, we described a fasting-based intervention that causes remarkable changes in the levels of glucose, IGF-I and many other proteins and molecules and is capable of protecting mammalian cells and mice from various toxins, including chemotherapy. Because oncogenes prevent the cellular switch to this stress resistance mode, starvation for 48 hours or longer protects normal yeast and mammalian cells and mice but not cancer cells from chemotherapy, an effect we termed Differential Stress Resistance (DSR). In a recent article, ten patients who fasted in combination with chemotherapy, reported that fasting was not only feasible and safe but caused a reduction in a wide range of side effects accompanied by an apparently normal and possibly augmented chemotherapy efficacy. Together with the remarkable results observed in animals, these data provide preliminary evidence in support of the human application of this fundamental biogerontology finding, particularly for terminal patients receiving chemotherapy. Here we briefly discuss the basic, pre-clinical and clinical studies on fasting and cancer therapy.Key words: fasting, cancer, chemotherapy, calorie restriction, stress resistanceAfter decades of slow progress in the identification of treatments effective on a wide range of malignancies, cancer treatment is now turning to personalized therapies based in part on pharmacogenomics. By contrast, aging research is moving in the opposite direction by searching for common ways to prevent, postpone and treat a wide range of age-related diseases, based on the modulation of genetic pathways that are conserved from yeast to mammals.1 In fact, it may be a solid evolutionary and comparative biology-foundation, which makes this ambitious goal of biogerontologists a realistic or at least a promising one. On the other hand, the progress of biogerontology is viewed by many clinicians as too fundamental and far from translational applications. In most cases, it is not clear how aging research will be translated into FDA approved drugs or treatments that have effects that are superior to those already available or being developed. For example, it is not clear how the long-term 20–30% reduction in calorie intake (dietary restriction, DR) that we and many others before us have shown to be effective in extending the life span of model organisms will make humans live longer or healthier.13 Furthermore, despite the fact that long-term DR was confirmed to reduce cancer and cardiovascular disease in monkeys4 and to be effective in preventing obesity, type 2 diabetes, inflammation, hypertension and atherosclerosis, as indicated by the early results in humans studies,5 it is highly unlikely to be adopted in its more extreme and effective version by even a small portion of the population. For example, the 20 to 40% chronic reduction in daily calorie intake shown to be effective in retarding cancer growth in mice would not be feasible for cancer therapy for multiple reasons: (1) the effects of chronic DR in patients with a clinically evident tumor is expected to delay but not stop the progression of the disease68 and this delay may only occur for a portion of the malignancies,9 (2) although weight loss and cachexia in the early stages of treatment are less prevalent than commonly thought,1012 the ∼15% loss of BMI and ∼30% long-term loss of body fat caused by a moderate (20%) calorie restriction13 may be tolerated by only a very small portion of cancer patients receiving treatment, (3) Because this long-term restriction is accompanied by delayed wound healing and immunologic impairment in rodents,1,14,15 it is not clear what risks it may impose on cancer patients receiving treatment.16 Our studies of DSR, which were triggered by our fundamental findings that switching yeast cells to water protected them against a wide range of toxins, started as a way to address these concerns but also as an attempt to achieve a much more potent therapeutic effect than that achieved by DR.17,18 Because starvation-induced protection can increase many fold when combined with modulation of pro-aging pathways and since it is in principle blocked by the expression of any oncogene, it has the potential to provide a method to allow common chemotherapy to selectively kill cancer cells, independently of the type of cancer.1921 The DSR experiments in mammals were also based on our hypothesis that stress resistance and aging regulatory pathways were conserved from yeast to mammals.We found that fasting for 48 or more hours or in vitro starvation conditions that mimic fasting protected mice and/or normal cells but not cancer cells from various chemotherapy drugs and other deleterious agents.21 This effect was shown to depend in part on the reduction of circulating IGF-I and glucose levels.21,22 Although a differential regulation of cell division in normal and cancer cells23,24 is likely to contribute to DSR, much of it appears to be dependent on protective systems which are normally maintained in an inactive or low activity state even in non-dividing cells.1,25 In fact, in non-dividing yeast and mice, deficiencies in glucose or IGF-I signaling that match those observed after starvation promote resistance to doxorubicin, a chemotherapy drug that specifically targets muscle cells in the heart.21,22As expected, many clinicians were skeptical of our hypothesis that cancer treatment could be improved not by a “magic bullet” but by a “not so magic DSR shield” as underlined by Leonard Saltz, an oncologist at Memorial Sloan-Kettering Cancer Center: “Would I be enthusiastic about enrolling my patients in a trial where they''re asked not to eat for 2.5 days? No.”26 However, ten oncologists did allow their patients, suffering from malignancies ranging from stage II breast cancer to stage IV esophageal, prostate and lung malignancies to undergo a 48–140 hours pre-chemotherapy and a 5–56 hours post chemotherapy water-only fast. The six patients who received chemotherapy with or without fasting reported a reduction in fatigue, weakness and gastrointestinal side effects while fasting27 (Fig. 1). A trend for a reduction of many additional side effects was also reported by the group of patients who always fasted before chemotherapy.27 In those patients whose cancer progression was assessed, chemotherapy was effective and in some cases it was highly effective.27 A clinical trial sponsored by the V-Foundation for Cancer Research, aimed at testing the safety and efficacy of a 24 hour fast in combination with chemotherapy, is in its safety stage. Because it was originally limited to patients diagnosed with bladder cancer the clinical trial progressed slowly. However, its recent expansion to include patients receiving platinum-based chemotherapy (breast, ovarian, lung cancer), is expected to expedite it. Conclusive results for the effect of a 3–4 day fast on chemotherapy-dependent side effects and possibly therapeutic index are not expected to become available for several years. Even if a more modest effect than the 1,000-fold differential protection against oxidative stress and chemotherapy observed in normal and cancer-like yeast cells was achieved in humans, this method could result in long-term survival for many patients with metastatic cancers, particularly those in which malignant cells have not acquired multidrug resistance.Open in a separate windowFigure 1Average self-reported severity of symptoms in patients that have received chemotherapy with or without fasting.  相似文献   
62.
Cultivated and wild potato species synthesize a wide variety of steroidal glycoalkaloids (GA) that may affect either human health or biotic stress resistance. Therefore, GA composition must be a major criterion in the evaluation of breeding products when species genomes are merged and/or manipulated. This work reports the results of GA analysis performed on unique haploid (2n=2x=24) plants obtained from tetraploid (2n=4x=48) Solanum bulbocastanumS. tuberosum hybrids through in vitro anther culture. Glycoalkaloids were extracted from tubers and analyzed by HPLC. Haploids generally showed the occurrence of parental GA. However, in several cases loss of parental GA and gain of new GA lacking in the parents was observed. It may be hypothesized that new GA profiles of our haploids is the result of either genetic recombination or combinatorial biochemistry events. To highlight differences between haploids and parents, soluble proteins and antioxidant activities were also determined. Both were always higher in haploids compared to their parents. The nature of the newly formed GAs will be further investigated, because they may represent new metabolites that can be used against pest and diseases, or are useful for human health.  相似文献   
63.
The powdery mildew disease affects several crop species and is also one of the major threats for pea (Pisum sativum L.) cultivation all over the world. The recessive gene er1, first described over 60 years ago, is well known in pea breeding, as it still maintains its efficiency as a powdery mildew resistance source. Genetic and phytopathological features of er1 resistance are similar to those of barley, Arabidopsis, and tomato mlo powdery mildew resistance, which is caused by the loss of function of specific members of the MLO gene family. Here, we describe the obtainment of a novel er1 resistant line by experimental mutagenesis with the alkylating agent diethyl sulfate. This line was found to carry a single nucleotide polymorphism in the PsMLO1 gene sequence, predicted to result in premature termination of translation and a non-functional protein. A cleaved amplified polymorphic sequence (CAPS) marker was developed on the mutation site and shown to be fully co-segregating with resistance in F2 individuals. Sequencing of PsMLO1 from three powdery mildew resistant cultivars also revealed the presence of loss-of-function mutations. Taken together, results reported in this study strongly indicate the identity between er1 and mlo resistances and are expected to be of great breeding importance for the development of resistant cultivars via marker-assisted selection.  相似文献   
64.
Alamethicin F50/5 is a hydrophobic peptide that is devoid of charged residues and that induces voltage-dependent ion channels in lipid membranes. The peptide backbone is likely to be involved in the ion conduction pathway. Electron spin-echo spectroscopy of alamethicin F50/5 analogs in which a selected Aib residue (at position n = 1, 8, or 16) is replaced by the TOAC amino-acid spin label was used to study torsional dynamics of the peptide backbone in association with phosphatidylcholine bilayer membranes. Rapid librational motions of limited angular amplitude were observed at each of the three TOAC sites by recording echo-detected spectra as a function of echo delay time, 2τ. Simulation of the time-resolved spectra, combined with conventional EPR measurements of the librational amplitude, shows that torsional fluctuations of the peptide backbone take place on the subnanosecond to nanosecond timescale, with little temperature dependence. Associated fluctuations in polar fields from the peptide could facilitate ion permeation.  相似文献   
65.
66.
Guanine nucleotide-, neurotransmitter-, and fluoride-stimulated accumulation of [3H]inositol phosphates ([3H]InsPs) was measured in [3H]inositol-labeled synaptoneurosomes from cerebral cortex of immature (7-day-old) and adult rats, in order to clarify the role of GTP-binding proteins (G-proteins) in modulating phosphoinositide (PtdIns) metabolism during brain development. GTP(S) [Guanosine 5-O-(3-thio)triphosphate] time- and concentration-dependently stimulated PtdIns hydrolysis. Its effect was potentiated by full (carbachol, metacholine) and partial (oxotremorine) cholinergic agonists through activation of muscarinic receptors. The presence of deoxycholate was required to demonstrate agonist protentiation of the guanine nucleotide effect. The response to GTP(S) was higher in adult than in immature rats, while the effect of cholinergic agonists was similar at the two ages examined. At both ages, histamine potentiated the effect of GTP(S), while norepinephrine was ineffective. At both ages, guanosine 5-O-(2-thio)diphosphate [GDP(S)] and pertussis toxin significantly decreased GTP(S)-induced [3H]InsPs formation. The phorbol ester phorbol 12-myristate 13-acetate (PMA), on the other hand, did not inhibit the guanine nucleotide response in synaptoneurosomes from immature rats. NaF mimicked the action of GTP(S) in stimulating PtdIns hydrolysis. Its effect was not affected by carbachol and was highly synergistic with that of AlCl3, according to the concept that fluoroaluminate (AlF4 ) is the active stimulatory species. No quantitative differences were found in the response to these salts between immature and adult animals. These results provide evidence that, in both the immature and adult rat brain, neuroreceptor activation is coupled to PtdIns hydrolysis through modulatory G-proteins.  相似文献   
67.
Several mechanistically distinct models of nonclassical secretion, including exocytosis of secretory lysosomes, shedding of plasma membrane microvesicles, and direct efflux through plasma membrane transporters, have been proposed to explain the rapid export of caspase-1-processed IL-1 beta from monocytes/macrophages in response to activation of P2X7 receptors (P2X7R) by extracellular ATP. We compared the contribution of these mechanisms to P2X7R-stimulated IL-1 beta secretion in primary bone marrow-derived macrophages isolated from wild-type, P2X7R knockout, or apoptosis-associated speck-like protein containing a C-terminal CARD knockout mice. Our experiments revealed the following: 1) a novel correlation between IL-1 beta secretion and the release of the MHC-II membrane protein, which is a marker of plasma membranes, recycling endosomes, multivesicular bodies, and released exosomes; 2) a common and absolute requirement for inflammasome assembly and active caspase-1 in triggering the cotemporal export of IL-1 beta and MHC-II; and 3) mechanistic dissociation of IL-1 beta export from either secretory lysosome exocytosis or plasma membrane microvesicle shedding on the basis of different requirements for extracellular Ca(2+) and differential sensitivity to pharmacological agents that block activation of caspase-1 inflammasomes. Thus, neither secretory lysosome exocytosis nor microvesicle shedding models constitute the major pathways for nonclassical IL-1 beta secretion from ATP-stimulated murine macrophages. Our findings suggest an alternative model of IL-1 beta release that may involve the P2X7R-induced formation of multivesicular bodies that contain exosomes with entrapped IL-1 beta, caspase-1, and other inflammasome components.  相似文献   
68.
Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences--the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The 'environmental packages' apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.  相似文献   
69.
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Research has shown that the majority of the cardiometabolic alterations associated with an increased risk of CVD (e.g., insulin resistance/type 2 diabetes, abdominal obesity, dyslipidemia, hypertension, and inflammation) can be prevented, and even reversed, with the implementation of healthier diets and regular exercise. Data from animal and human studies indicate that more drastic interventions, i.e., calorie restriction with adequate nutrition (CR), may have additional beneficial effects on several metabolic and molecular factors that are modulating cardiovascular aging itself (e.g., cardiac and arterial stiffness and heart rate variability). The purpose of this article is to review the current knowledge on the effects of CR on the aging of the cardiovascular system and CVD risk in rodents, monkeys, and humans. Taken together, research shows that CR has numerous beneficial effects on the aging cardiovascular system, some of which are likely related to reductions in inflammation and oxidative stress. In the vasculature, CR appears to protect against endothelial dysfunction and arterial stiffness and attenuates atherogenesis by improving several cardiometabolic risk factors. In the heart, CR attenuates age-related changes in the myocardium (i.e., CR protects against fibrosis, reduces cardiomyocyte apoptosis, prevents myosin isoform shifts, etc.) and preserves or improves left ventricular diastolic function. These effects, in combination with other benefits of CR, such as protection against obesity, diabetes, hypertension, and cancer, suggest that CR may have a major beneficial effect on health span, life span, and quality of life in humans.  相似文献   
70.
Four X-linked loci showing homology with a previously described Y-linked polymorphic locus (DYS413) were identified and characterized. By fluorescent in situ hybridization (FISH), somatic cell hybrids, and YAC screening, the X-linked members of this small family of sequences (CAIII) all map in Xp22, while the Y members map in Yq11. These loci contribute to the overall similarity of the two genomic regions. All of the CAIII loci contain an internal microsatellite of the (CA)n type. The microsatellites display extensive length polymorphism in two of the X-linked members as well as in the Y members. In addition, common sequence variants are found in the portions flanking the microsatellites in two of the X-linked members. Our results indicate that, during the evolution of this family, length variation on the Y chromosome was accumulated at a rate not slower than that on the X chromosome. Finally, these sequences represent a model system with which to analyze human populations for similar X- and Y-linked polymorphisms. Received: 29 July 1996 / Accepted: 15 January 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号