首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3511篇
  免费   246篇
  3757篇
  2023年   16篇
  2022年   32篇
  2021年   53篇
  2020年   45篇
  2019年   66篇
  2018年   87篇
  2017年   57篇
  2016年   95篇
  2015年   142篇
  2014年   156篇
  2013年   240篇
  2012年   251篇
  2011年   267篇
  2010年   162篇
  2009年   138篇
  2008年   232篇
  2007年   230篇
  2006年   204篇
  2005年   172篇
  2004年   158篇
  2003年   170篇
  2002年   171篇
  2001年   38篇
  2000年   22篇
  1999年   33篇
  1998年   34篇
  1997年   40篇
  1996年   27篇
  1995年   40篇
  1994年   27篇
  1993年   29篇
  1992年   34篇
  1991年   24篇
  1990年   27篇
  1989年   13篇
  1988年   17篇
  1987年   18篇
  1986年   16篇
  1985年   17篇
  1984年   18篇
  1983年   10篇
  1982年   14篇
  1981年   19篇
  1980年   12篇
  1979年   9篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   7篇
  1971年   4篇
排序方式: 共有3757条查询结果,搜索用时 15 毫秒
991.
Fluorescence-based glucose sensors using glucose-binding protein (GBP) as the receptor have employed fluorescence resonance energy transfer (FRET) and environmentally sensitive dyes, but with widely varying sensitivity. We therefore compared signal changes in (a) a FRET system constructed by transglutaminase-mediated N-terminal attachment of Alexa Fluor 488/555 as donor and QSY 7 as acceptor at Cys 152 or 182 mutations with (b) GBP labelled with the environmentally sensitive dye badan at C152 or 182. Both FRET systems had a small maximal fluorescence change at saturating glucose (7% and 16%), badan attached at C152 was associated with a 300% maximal fluorescence increase with glucose, though with badan at C182 there was no change. We conclude that glucose sensing based on GBP and FRET does not produce a larger enough signal change for clinical use; both the nature of the environmentally sensitive dye and its site of conjugation seem important for maximum signal change; badan-GBP152C has a large glucose-induced fluorescence change, suitable for development as a glucose sensor.  相似文献   
992.

Background

Nucleophosmin (NPM1, B23) is a multifunctional protein that is involved in a variety of fundamental biological processes. NPM1/B23 deregulation is implicated in the pathogenesis of several human malignancies. This protein exerts its functions through the interaction with a multiplicity of biological partners. Very recently it is has been shown that NPM1/B23 specifically recognizes DNA G-quadruplexes through its C-terminal region.

Methods

Through a rational dissection approach of protein here we show that the intrinsically unfolded regions of NPM1/B23 significantly contribute to the binding of c-MYC G-quadruplex motif. Interestingly, the analysis of the ability of distinct NPM1/B23 fragments to bind this quadruplex led to the identifications of distinct NPM1/B23-based peptides that individually present a high affinity for this motif.

Results

These results suggest that the tight binding of NPM1/B23 to the G-quadruplex is achieved through the cooperation of both folded and unfolded regions that are individually able to bind it. The dissection of NPM1/B23 also unveils that its H1 helix is intrinsically endowed with an unusual thermal stability.

Conclusions

These findings have implications for the unfolding mechanism of NPM1/B23, for the G-quadruplex affinity of the different NPM1/B23 isoforms and for the design of peptide-based molecules able to interact with this DNA motif.

General observation

This study sheds new light in the molecular mechanism of the complex NPM1/G-quadruplex involved in acute myeloid leukemia (AML) disease.  相似文献   
993.
NO-donors block Plasmodium, Trypanosoma, and Leishmania life cycle by inactivating parasite enzymes, e.g., cysteine proteinases. In this study, the inactivation of falcipain, cruzipain, and Leishmania infantum cysteine proteinase by the NO-donor 4-(phenylsulfonyl)-3-((2-(dimethylamino)ethyl)thio)-furoxan oxalate (SNO-102) is reported. SNO-102 inactivates dose- and time-dependently parasite cysteine proteinases; one equivalent of NO, released from SNO-102, inactivates one equivalent of L. infantum cysteine proteinase. With SNO-102 in excess over the parasite cysteine proteinase, the time course of enzyme inhibition corresponds to a pseudo-first-order reaction for more than 90% of its course. The concentration dependence of the pseudo-first-order rate constant is second-order at low SNO-102 concentration but tends to first-order at high NO-donor concentration. This behavior may be explained by a relatively fast pre-equilibrium followed by a limiting pseudo-first order process. Kinetic parameters of L. infantum cysteine proteinase inactivation by SNO-102 are affected by the acidic pK shift of one apparent ionizing group (from pK(unl)=5.8 to pK(lig)=4.7) upon enzyme inhibition. Falcipain, cruzipain and L. infantum cysteine proteinase inactivation is prevented and reversed by dithiothreitol and L-ascorbic acid. Furthermore, the fluorogenic substrate N-alpha-benzyloxycarbonyl-Phe-Arg-(7-amino-4-methylcoumarin) protects parasite cysteine proteinases from inactivation by SNO-102. The absorption spectrum of the inactive S-nitrosylated SNO-102-treated L. infantum cysteine proteinase displays a maximum at about 340 nm. These results indicate that the parasite cysteine proteinase inactivation by SNO-102 occurs via the NO-mediated S-nitrosylation of the Cys25 catalytic residue.  相似文献   
994.
The problem of pattern formation in a generic two species reaction–diffusion model is studied, under the hypothesis that only one species can diffuse. For such a system, the classical Turing instability cannot take place. At variance, by working in the generalized setting of a stochastic formulation to the inspected problem, spatially organized patterns can develop, seeded by finite size corrections. General conditions are given for the stochastic patterns to occur. The predictions of the theory are tested for a specific case study.  相似文献   
995.
The shape, distribution, and content of mitochondria in individual cells were examined during the cell cycle phases (G0/G1, S, G2 mitosis) in living human fibroblasts by static cytofluorometry and fluorescence microscopy. The morphocytochemical evaluations were performed in cell cultures submitted to double supravital fluorochrome staining with Hoechst 33342 and DiOC6 to label DNA and mitochondria, respectively. The staining modalities were based on the stability of mitochondrial labeling. The G1 to early S phases were characterized by the presence of filamentous mitochondria, except during the early postmitotic period. During late S, G2, and mitotic phases, mitochondrial mass reached its highest value and mitochondria became short and numerous. During the last stage of mitosis, mitochondria were distributed among daughter cells through a cytoplasmic bridge.  相似文献   
996.
The synthesis of poly[N,N‐bis(3‐aminopropyl)glycine] (PAPGly) dendrons Gd‐based contrast agents (GdCAs) via an orthogonal protection of the different functional groups and an activation/coupling strategy wherein a specific number of synthetic steps add a generation to the existing dendron has been described. The aim of this protocol is to build up two different generations of dendrons ( G‐0 or dendron's core, and G‐1 ) with peripheral NH2 groups to conjugate a 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid (DO3A) derivative and afterwards to chelate with Gd3+ paramagnetic ions. These complexes, which have a well‐defined molecular weight, are of relevance to MRI as an attempt to gain higher 1H relaxivity by slowing down the rotation of molecule compared to monomeric Gd(III) complexes used as contrast agents and to increase the number of paramagnetic centers present in one molecular structure. From the study of their water 1H longitudinal relaxation rate at different magnetic fields (NMRD, Nuclear Magnetic Relaxation Dispersion) and by evaluating the variable temperature 17O‐NMR data we determined the parameters characterizing the water exchange rate and the rotational correlation time of each complex, both affecting 1H relaxivity. Furthermore, these two novel PAPGly GdCAs were objects of i) an in vivo study to determine their biodistributions in healthy C57 mice at several time points, and ii) the Dynamic Contrast‐Enhanced MRI (DCE‐MRI) approach to assess their contrast efficiency measured in the tumor region of C57BL/6 mice transplanted subcutaneously with B16‐F10 melanoma cells. The aim of the comparison of these two dendrons GdCAs, having different molecular weights (MW), is to understand how MW and relaxivity may influence the contrast enhancement capabilities in vivo at low magnetic field (1 T). Significant contrast enhancement was observed in several organs (vessel, spleen and liver), already at 5 min post‐injection, for the investigated CAs. Moreover, these CAs induced a marked contrast enhancement in the tumor region, thanks to the enhanced permeability retention effect of those macromolecular structures.  相似文献   
997.
Rhamnus persicifolia Moris is an endemic small tree belonging to the Rhamnus cathartica group, growing along mountainous streams of Central-Eastern Sardinia (Italy). ISSR markers were used to detect the genetic diversity within and among six populations representative of the species distribution range. In spite of the limited distribution of this endemic taxon, fairly high levels of genetic diversity were detected. Percentage of polymorphic bands (PPB), gene diversity (HS and HT) and Shannon information measure (Sh) were calculated both at population (PPB = 30.70%, HS = 0.1105, Sh = 0.1646) and at species level (PPB = 68.42%, HT = 0.2066, Sh = 0.3139).The existence of a spatial distribution of genetic diversity in R. persicifolia was revealed by a low gene flow, a fairly high level of genetic differentiation (GST = 0.4583) among populations and a positive correlation between genetic and geographic distances (Mantel test, r = 0.71, p = 0.016). The spatial genetic structure was also confirmed with BAPS analysis. Our results show that a certain level of isolation by distance and sex-ratio bias may explain the distribution of genetic diversity among populations.Conservation measures are suggested on the basis of the genetic diversity detected, by implementing an integrated in situ and ex situ conservation program for each population, in order to ensure effective protection for this endemic species.  相似文献   
998.
Interleukin-1beta (IL-1beta) is a pro-inflammatory cytokine that plays an important role in host defense and inflammatory diseases. The maturation and secretion of IL-1beta are mediated by caspase-1, a protease that processes pro-IL-1beta into biologically active IL-1beta. The activity of caspase-1 is controlled by the inflammasome, a multiprotein complex formed by NLR proteins and the adaptor ASC, that induces the activation of caspase-1. The current model proposes that changes in the intracellular concentration of K(+) potentiate caspase-1 activation induced by the recognition of bacterial products. However, the roles of P2X7 receptor and intracellular K(+) in IL-1beta secretion induced by bacterial infection remain unknown. Here we show that, in response to Toll-like receptor agonists such as lipopolysaccharide or infection with extracellular bacteria Staphylococcus aureus and Escherichia coli, efficient caspase-1 activation is only triggered by addition of ATP, a signal that promotes caspase-1 activation through depletion of intracellular K(+) caused by stimulation of the purinergic P2X7 receptor. In contrast, activation of caspase-1 that relies on cytosolic sensing of flagellin or intracellular bacteria did not require ATP stimulation or depletion of cytoplasmic K(+). Consistently, caspase-1 activation induced by intracellular Salmonella or Listeria was unimpaired in macrophages deficient in P2X7 receptor. These results indicate that, unlike caspase-1 induced by Toll-like receptor agonists and ATP, activation of the inflammasome by intracellular bacteria and cytosolic flagellin proceeds normally in the absence of P2X7 receptor-mediated cytoplasmic K(+) perturbations.  相似文献   
999.

Background

While G6PD deficiency is one of the major causes of acute hemolytic anemia, the membrane changes leading to red cell lysis have not been extensively studied. New findings concerning the mechanisms of G6PD deficient red cell destruction may facilitate our understanding of the large individual variations in susceptibility to pro-oxidant compounds and aid the prediction of the hemolytic activity of new drugs.

Methodology/Principal Findings

Our results show that treatment of G6PD deficient red cells with diamide (0.25 mM) or divicine (0.5 mM) causes: (1) an increase in the oxidation and tyrosine phosphorylation of AE1; (2) progressive recruitment of phosphorylated AE1 in large membrane complexes which also contain hemichromes; (3) parallel red cell lysis and a massive release of vesicles containing hemichromes. We have observed that inhibition of AE1 phosphorylation by Syk kinase inhibitors prevented its clustering and the membrane vesiculation while increases in AE1 phosphorylation by tyrosine phosphatase inhibitors increased both red cell lysis and vesiculation rates. In control RBCs we observed only transient AE1 phosphorylation.

Conclusions/Significance

Collectively, our findings indicate that persistent tyrosine phosphorylation produces extensive membrane destabilization leading to the loss of vesicles which contain hemichromes. The proposed mechanism of hemolysis may be applied to other hemolytic diseases characterized by the accumulation of hemoglobin denaturation products.  相似文献   
1000.
Shigella infection, the cause of bacillary dysentery, induces caspase-1 activation and cell death in macrophages, but the precise mechanisms of this activation remain poorly understood. We demonstrate here that caspase-1 activation and IL-1beta processing induced by Shigella are mediated through Ipaf, a cytosolic pattern-recognition receptor of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, and the adaptor protein apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC). We also show that Ipaf was critical for pyroptosis, a specialized form of caspase-1-dependent cell death induced in macrophages by bacterial infection, whereas ASC was dispensable. Unlike that observed in Salmonella and Legionella, caspase-1 activation induced by Shigella infection was independent of flagellin. Notably, infection of macrophages with Shigella induced autophagy, which was dramatically increased by the absence of caspase-1 or Ipaf, but not ASC. Autophagy induced by Shigella required an intact bacterial type III secretion system but not VirG protein, a bacterial factor required for autophagy in epithelial-infected cells. Treatment of macrophages with 3-methyladenine, an inhibitor of autophagy, enhanced pyroptosis induced by Shigella infection, suggesting that autophagy protects infected macrophages from pyroptosis. Thus, Ipaf plays a critical role in caspase-1 activation induced by Shigella independently of flagellin. Furthermore, the absence of Ipaf or caspase-1, but not ASC, regulates pyroptosis and the induction of autophagy in Shigella-infected macrophages, providing a novel function for NLR proteins in bacterial-host interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号