首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3227篇
  免费   207篇
  3434篇
  2023年   14篇
  2022年   30篇
  2021年   51篇
  2020年   39篇
  2019年   59篇
  2018年   79篇
  2017年   55篇
  2016年   83篇
  2015年   131篇
  2014年   143篇
  2013年   228篇
  2012年   244篇
  2011年   252篇
  2010年   155篇
  2009年   123篇
  2008年   217篇
  2007年   219篇
  2006年   180篇
  2005年   150篇
  2004年   153篇
  2003年   162篇
  2002年   158篇
  2001年   28篇
  2000年   16篇
  1999年   27篇
  1998年   26篇
  1997年   32篇
  1996年   20篇
  1995年   29篇
  1994年   22篇
  1993年   22篇
  1992年   25篇
  1991年   23篇
  1990年   26篇
  1989年   11篇
  1988年   11篇
  1987年   13篇
  1986年   10篇
  1985年   13篇
  1984年   15篇
  1983年   8篇
  1982年   12篇
  1981年   17篇
  1980年   13篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   7篇
  1973年   7篇
排序方式: 共有3434条查询结果,搜索用时 15 毫秒
41.
42.
A cold-regulated gene (cor tmc-ap3) coding for a putative chloroplastic amino acid selective channel protein was isolated from cold-treated barley leaves combining the differential display and the 5-RACE techniques. Cor tmc-ap3 is expressed at low level under normal growing temperature, and its expression is strongly enhanced after cold treatment. A positive correlation between the expression of cor tmc-ap3 and frost tolerance was found both among barley cultivars and among cereal species. The COR TMC-AP3 protein was expressed in vitro, purified and used to raise a polyclonal antibody. Western analysis showed that the cor tmc-ap3 gene product is localized to the chloroplastic outer envelope fraction, supporting its putative function. The frost-resistant winter cultivar Onice accumulated COR TMC-AP3 more rapidly and at a higher level than the frost-susceptible spring cultivar Gitane. After 28 days of cold acclimation the winter cultivar had about 2-fold more protein than the spring genotype. All these results suggest that an increased amount of a chloroplastic amino acid selective channel protein could be required for cold acclimation in cereals. Hypotheses about the role of COR TMC-AP3 during the hardening process are discussed.  相似文献   
43.
Cathepsin B is a cysteine protease that in tumor tissues is localized in both acidic lysosomes and extracellular spaces. It can catalyze the cleavage of peptide bonds by two mechanisms: endoproteolytic attack with a pH optimum around 7.4, and attack from the C-terminus with a pH optimum at 4.5-5.5. In this work, seven fluorescent, internally quenched, decapeptides have been synthesized using the prototypical cathepsin B selective substrate Z-Phe-Arg-AMC as a lead, and used to identify the structural factors determining the susceptibility of peptides to hydrolysis at acidic and neutral pH values. Each peptide differs from the others in one amino acid (residue 6) and contains a highly fluorescent Nma group linked to the alpha-amino function of the N-terminal Orn residue and a Dnp group linked to the side chain of the Lys(8) residue acting as a quencher. Proteolytic cleavage was monitored by measuring the increase of fluorescence at 440 nm upon excitation at 340 nm, and the cleavage sites were determined by HPLC followed by ESI-MS analysis. Peptides containing Ala or Phe at position 6 are good substrates for the enzyme at both pH 5.0 and 7.4. By contrast, those containing Glu, Asp, Lys or Val are not cleaved at all by cathepsin B at pH 7.4, and are poorly hydrolyzed at pH 5.0. These findings provide new information for the rational design of cathepsin B-activated peptide-containing anticancer drugs.  相似文献   
44.
Epidemiological evidence suggests a link between consumption of chlorinated drinking water and various cancers. Chlorination of water rich in organic chemicals produces carcinogenic organochlorine by-products (OBPs) such as trihalomethanes and haloacetic acids. Since the discovery of the first OBP in the 1970s, there have been several investigations designed to determine the biological effects of single chemicals or small artificial OBP combinations. However, there is still insufficient information regarding the general biological response to these compounds, and further studies are still needed to evaluate their potential genotoxic effects. In the current study, we evaluated the effect of three drinking water disinfectants on the activity of cytochrome P450 (CYP)-linked metabolizing enzymes and on the generation of oxidative stress in the livers of male and female Cyprinus carpio fish (carp). The fish were exposed in situ for up 20 days to surface water obtained from the Trasmene lake in Italy. The water was treated with 1-2 mg/L of either sodium hypochlorite (NaClO) or chlorine dioxide (ClO2) as traditional disinfectants or with a relatively new disinfectant product, peracetic acid (PAA). Micronucleus (MN) frequencies in circulating erythrocytes from the fish were also analysed as a biomarker of genotoxic effect. In the CYP-linked enzyme assays, a significant induction (up to a 57-fold increase in the deethylation of ethoxyresorufin with PAA treatment) and a notable inactivation (up to almost a 90% loss in hydroxylation of p-nitrophenol with all disinfectants, and of testosterone 2beta-hydroxylation with NaClO) was observed in subcellular liver preparations from exposed fish. Using the electron paramagnetic resonance (EPR) spectroscopy radical-probe technique, we also observed that CYP-modulation was associated with the production of reactive oxygen species (ROS). In addition, we found a significant increase in MN frequency in circulating erythrocytes after 10 days of exposure of fish to water treated with ClO2, while a non-significant six-fold increase in MN frequency was observed with NaClO, but not with PAA. Our data suggest that the use of ClO2 and NaClO to disinfect drinking water could generate harmful OBP mixtures that are able to perturb CYP-mediated reactions, generate oxidative stress and induce genetic damage. These data may provide a mechanistic explanation for epidemiological studies linking consumption of chlorinated drinking water to increased risk of urinary, gastrointestinal and bladder cancers.  相似文献   
45.
Gold(III) compounds constitute an emerging class of biologically active substances, of special interest as potential anticancer agents. During the past decade a number of structurally diverse gold(III) complexes were reported to be acceptably stable under physiological-like conditions and to manifest very promising cytotoxic effects against selected human tumour cell lines, making them good candidates as anti-tumour drugs. Some representative examples will be described in detail. There is considerable interest in understanding the precise biochemical mechanisms of these novel cytotoxic agents. Based on experimental evidence collected so far we hypothesize that these metallodrugs, at variance with classical platinum(II) drugs, produce in most cases their growth inhibition effects through a variety of "DNA-independent" mechanisms. Notably, strong inhibition of the selenoenzyme thioredoxin reductase and associated disregulation of mitochondrial functions were clearly documented in some selected cases, thus providing a solid biochemical basis for the pronounced proapoptotic effects. These observations led us to investigate in detail the reactions of gold(III) compounds with a few model proteins in order to gain molecular-level information on the possible interaction modes with possible protein targets. Valuable insight on the formation and the nature of gold-protein adducts was gained through ESI MS (electrospray ionization mass spectrometry) and spectrophotometric studies of appropriate model systems as it is exemplified here by the reactions of two representative gold(III) compounds with cytochrome c and ubiquitin. The mechanistic relevance of gold(III)-induced oxidative protein damage and of direct gold coordination to protein sidechains is specifically assessed. Perspectives for the future of this topics are briefly outlined.  相似文献   
46.
Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi‐environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype‐by‐environment (G×E) modelling. Sub‐populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock‐related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large‐effect alleles. Our analysis supports a gene‐level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.  相似文献   
47.
The interactions between N-tosylamino acids and cobalt(II), nickel(II) and zinc(II) ions in aqueous solution and in the solid state have been investigated. From concentrated aqueous solutions, compounds of general formula [M(II)(N-tosylaminoacidato)2(H2O)4](M = Co(II), Ni(II) and N-tosylaminoacidato = N-tosylglycinate (Tsgly?), N-tosyl-α- and -β-alaninate (Ts-α- and Ts-β-ala?); M = Zn(II) and N-tosylaminoacidate = Tsgly?, Ts-β-ala?) and [Zn(II)(N- tosylaminoacidato)2(H2O)2] were isolated and characterized by means of thermogravimetric, electronic and infrared spectra. For two of them: [Co(Tsgly)2(H2O)4](I) and [Zn(Ts-β-ala)2(H2O)4](II) the crystal and molecular structures were also determined. Both compounds crystallize in the monoclinic space group P21/c, with two formula units in a cell of dimensions: a = 13.007(6), b = 5.036(2), c = 18.925(7) Å, β = 102.33(3)° for (I) and a = 14.173(6), b = 5.469(2), c = 17.701(7) Å, β = 106.63(3)° for (II). The structures were solved by the heavy-atom method and refined by least-squares calculations to R = 0.031 and 0.064 for (I) and (II) respectively. The cobalt and zinc atoms lie in the centers of symmetry, each bonded to two amino- acid molecules through a carboxylic oxygen atom and four water molecules in a slightly tetragonally distorted octahedral geometry. The second carboxylic oxygen atom is not involved in metal coordination. Electronic and X ray-powder spectra suggest that the tetrahydrate complexes of Co2+, Ni2+ and Zn2+ ions of the same amino acids are isomorphous and isostructural. No coordinative interactions between ligand and metal ions were found in aqueous solution on varying the pH values before hydroxide precipitation.  相似文献   
48.
49.
Soil solarization, alone or combined with organic amendment, is an increasingly attractive approach for managing soil-borne plant pathogens in agricultural soils. Even though it consists in a relatively mild heating treatment, the increased soil temperature may strongly affect soil microbial processes and nutrients dynamics. This study aimed to investigate the impact of solarization, either with or without addition of farmyard manure, in soil dynamics of various C, N and P pools. Changes in total C, N and P contents and in some functionally-related labile pools (soil microbial biomass C and N, K2SO4-extractable C and N, basal respiration, KCl-exchangeable ammonium and nitrate, and water-soluble P) were followed across a 72-day field soil solarization experiment carried out during a summer period on a clay loam soil in Southern Italy. Soil physico-chemical properties (temperature, moisture content and pH) were also monitored. The average soil temperature at 8-cm depth in solarized soils approached 55 °C as compared to 35 °C found in nonsolarized soil. Two-way ANOVA (solarization×organic amendment) showed that both factors significantly affected most of the above variables, being the highest influence exerted by the organic amendment. With no manure addition, solarization did not significantly affect soil total C, N and P pools. Whereas soil pH, microbial biomass and, at a greater extent, K2SO4-extractable N and KCl-exchangeable ammonium were greatly affected. An increased release of water-soluble P was also found in solarized soils. Yet, solarization altered the quality of soluble organic residues released in soil as it lowered the C-to-N ratio of both soil microbial biomass and K2SO4-extractable organic substrates. Additionally, in solarized soils the metabolic quotient (qCO2) significantly increased while the microbial biomass C-to-total organic C ratio (microbial quotient) decreased over the whole time course. We argued that soil solarization promoted the mineralization of readily decomposable pools of the native soil organic matter (e.g. the microbial biomass) thus rendering larger, at least over a short-term, the available fraction of some soil mineral nutrients, namely N and P forms. However, over a longer prospective solarization may lead to an over-exploitation of labile organic resources in agricultural soils. Manure addition greatly increased the levels of both total and labile C, N and P pools. Thus, addition of organic amendments could represent an important strategy to protect agricultural lands from excessive soil resources exploitation and to maintain soil fertility while enhancing pest control.  相似文献   
50.
The possibility that a sinusoidal 50 Hz magnetic field with a magnetic flux density of 1 mT can damage MG-63 osteosarcoma spheroids and induce variations in the invasive properties of these three-dimensional model systems after 2 days of exposure was investigated. Specifically, possible damage induced by these fields was examined by determining changes in spheroid surface morphology (light microscopy), growth (spheroid diameter and protein content determination), lactate dehydrogenase release, and reduced glutathione amount. Possible changes in the invasive properties were studied by invasion chambers. The results show no induction of cell damage by ELF fields while invasion chamber assays demonstrate a significant increase in the invasive potential of exposed spheroids. In order to determine if the fibronectin or hyaluronan receptors are involved, Western blot analysis was conducted on these two proteins. No significant variations were observed in either receptor in MG-63 multicellular tumor spheroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号