首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3241篇
  免费   216篇
  2023年   14篇
  2022年   18篇
  2021年   51篇
  2020年   39篇
  2019年   58篇
  2018年   79篇
  2017年   55篇
  2016年   84篇
  2015年   131篇
  2014年   143篇
  2013年   227篇
  2012年   248篇
  2011年   255篇
  2010年   155篇
  2009年   123篇
  2008年   218篇
  2007年   222篇
  2006年   181篇
  2005年   154篇
  2004年   150篇
  2003年   162篇
  2002年   161篇
  2001年   27篇
  2000年   17篇
  1999年   28篇
  1998年   26篇
  1997年   33篇
  1996年   21篇
  1995年   29篇
  1994年   22篇
  1993年   22篇
  1992年   29篇
  1991年   24篇
  1990年   28篇
  1989年   13篇
  1988年   12篇
  1987年   14篇
  1986年   10篇
  1985年   15篇
  1984年   16篇
  1983年   8篇
  1982年   13篇
  1981年   18篇
  1980年   12篇
  1979年   9篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1975年   7篇
  1967年   4篇
排序方式: 共有3457条查询结果,搜索用时 15 毫秒
81.
Plant and Soil - Data about woody debris (WD) decomposition are very scarce for the Mediterranean basin. The specific aim of this work is to explore the relationships between WD traits with the...  相似文献   
82.
Molecular Biology Reports - Benign metastasizing leiomyoma (BML) is a rare disease characterized by extrauterine benign leiomyomatosis in patients with a previous or concomitant history of uterine...  相似文献   
83.
The vascular cellular adhesion molecule-1 (VCAM-1) is a protein that canonically participates in the adhesion and transmigration of leukocytes to the interstitium during inflammation. VCAM-1 expression, together with soluble VCAM-1 (sVCAM-1) induced by the shedding of VCAM-1 by metalloproteinases, have been proposed as biomarkers in immunological diseases, cancer, autoimmune myocarditis, and as predictors of mortality and morbidity in patients with chronic heart failure (HF), endothelial injury in patients with coronary artery disease, and arrhythmias. This revision aims to discuss the role of sVCAM-1 as a biomarker to predict the occurrence, development, and preservation of cardiovascular disease.  相似文献   
84.
85.
Abstract

OXIDATION PATHWAYS OF EXTRAMITOCHONDRIAL PIRIDINE COENZYMES. I. - ON THE « IN VIVO » EFFICIENCY OF THE ASCORBATE-DEYHDROASCORBATE SYSTEM. — An evaluation of the efficiency in vivo of the AA-DHA couple as an electron carrier system has been attempted, by measuring after short time of anaerobiosis the rate of the increase of AA and of the dicrease of DHA in etiolated pea internode segments and in potato tuber disks. The changes of reduced glutathione (GSH) contents as induced by anaerobiosis or by the addition of DHA to the incubation medium were also followed.

In the pea segments anaerobiosis induced a significant increase of AA and a corresponding decrease of DHA. These changes were almost completed after 10 minutes from starting anaerobiosis. The value (extrapolated to 0 time) of the initial rate of DHA desappearance under anaerobiosis was taken as representing the rate of DHA reduction to AA « in vivo », under aerobic conditions. As this rate — in a steady state situation — corresponds to that of the inverse process of oxidation of AA to DHA, this value should give and indication on the « in vivo » efficiency of the AA-DHA system as an electron carrier in respiration. As some AA was probably reoxidized to DHA in the very short period required to kill the tissue, the value of the AA DHA turnover thus calculated is probably somewhat lower than the real one.

According to the present work, the oxidative turnover of the AA-DHA system would results of 0,7 micromoles/g. fr. weght/h. for the pea internode tissues and of 0,9 micromoles/g. fr. weght?h for the potato tuber (aged disks). These values would account for 5% of total oxygen uptake, in the former, and for 3% in the latter material.

The very high AA/DHA ratio usually prevailing in living cells suggests that the contents in DHA (and thus the activity of the AA oxidizing systems) is a limiting factor for the efficiency of the AA-DHA system as an electron carrier. This view is supported also by experiments in which DHA (at pH 5) was fed to pea internode segments and to potato tuber disks : as the presence of DHA into the medium induced — under anaerobiotic conditions — a rapid increase of the level of AA in both types of materials. In aerobiosis uptake and reduction of DHA to AA was evident in the potato tuber tissue, while it appeared very scarce in the pea internodes. As an interpretation of this behaviour it is suggested that, in aerobiosis, the very active and probably surface localized ascorbic acid oxidase of the pea tissue re-oxidises the AA formed from reduction of the DHA fed; an accumulation of DHA into the cells would follow, and this excess of DHA would inhibit the enzyme GSH-DHA reductase. This enzyme, in fact, appears, from « in vitro » experiments, to be strongly inhibited by DHA when the DHA/GSH ratio becomes higher than 1. On the other hand, the same hypothesis is also supported by the finding that the addition of DHA to the medium induces a significant drop in the GSH level (probably due to its oxidation to GSSG) only under those conditions in which DHA is absorbed and reduced to AA; that is, in the pea internodes, under anaerobiosis, and in the potato disks, under both anaerobiosis and aerobiosis. These results are also taken as confirming the indication from the enzymatic data that GSH is acting, in vivo as a reducing agent for DHA. The results of this investigation are thus interpred as showing that a comparatively small, but by no means negligeable fraction of respiration is mediated, in higher plant tissues such as those of the pea stem and the potato tuber, by and electron transfer system including glutathione and the ascorbate-dehydroascorbate couple. The efficiency of this system in the materials investigated appears to account for 3–5% of the total 02 uptake (minimum value). As enzyme systems transferring electrons from TPNH to ox. glutathione are widely distributed and generally very active in higher plant tissues, it is suggested that the sequence TPNH-GSH-AA/DHA - O2 is probably of considerable importance in mediating the reoxidation of extramitochondrial trophosphoridine nucleotide and thus in permitting the operation of the TPN requiring pentose phosphate pathway of respiration.  相似文献   
86.
87.
88.
89.
Herpes simplex virus (HSV) is a significant human pathogen causing mucocutaneous lesions primarily in the oral or genital mucosa. Although acyclovir (ACV) and related nucleoside analogs provide successful treatment, HSV remains highly prevalent worldwide and is a major cofactor for the spread of human immunodeficiency virus. Encephalitis, meningitis, and blinding keratitis are among the most severe diseases caused by HSV. ACV resistance poses an important problem for immunocompromised patients and highlights the need for new safe and effective agents; therefore, the development of novel strategies to eradicate HSV is a global public health priority. Despite the continued global epidemic of HSV and extensive research, there have been few major breakthroughs in the treatment or prevention of the virus since the introduction of ACV in the 1980s. A therapeutic strategy at the moment not fully addressed is the use of small peptide molecules. These can be either modeled on viral proteins or derived from antimicrobial peptides. Any peptide that interrupts protein–protein or viral protein–host cell membrane interactions is potentially a novel antiviral drug and may be a useful tool for elucidating the mechanisms of viral entry. This review summarizes current knowledge and strategies in the development of synthetic and natural peptides to inhibit HSV infectivity. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
90.
The conditions under which Coenzyme Q (CoQ) may protect platelet mitochondrial function of transfusional buffy coats from aging and from induced oxidative stress were investigated. The Pasteur effect, i.e. the enhancement of lactate production after inhibition of mitochondrial respiratory chain, was exploited as a marker of mitochondrial function as it allows to calculate the ratio of mitochondrial ATP to glycolytic ATP. Reduced CoQ 10 improves platelet mitochondrial function of transfusional buffy coats and protects the cells from induced oxidative stress. Oxidized CoQ is usually less effective, despite the presence, shown for the first time in this study, of quinone reductase activities in the platelet plasma membranes. The addition of a CoQ reducing system to platelets is effective in enhancing the protection of platelet mitochondrial function from the oxidative stress. The results support on one hand a possibility of protection of mitochondrial function in aging by exogenous CoQ intake, on the other a possible application in protection of transfusional buffy coats from storage conditions and oxidative deterioration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号