首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   28篇
  国内免费   6篇
  486篇
  2022年   10篇
  2021年   14篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   15篇
  2014年   27篇
  2013年   17篇
  2012年   40篇
  2011年   32篇
  2010年   10篇
  2009年   11篇
  2008年   19篇
  2007年   20篇
  2006年   17篇
  2005年   12篇
  2004年   14篇
  2003年   17篇
  2002年   10篇
  2001年   13篇
  2000年   12篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   5篇
  1993年   6篇
  1992年   9篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1980年   2篇
  1979年   8篇
  1978年   2篇
  1977年   5篇
  1976年   4篇
  1974年   2篇
  1972年   2篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有486条查询结果,搜索用时 15 毫秒
151.
We consider the classical single locus two alleles selection model with diffusion where the fitnesses of the genotypes are density dependent. Using a theorem of Peter Brown, we show that in a bounded domain with homogeneous Neumann boundary conditions, the allele frequency and population density converge to a constant equilibrium lying on the zero population mean fitness curve. The results agree with the case without diffusion obtained by Selgrade and Namkoong. Frequency and density dependent selection is also considered.Research partially supported by NSF grant DMS-8601585  相似文献   
152.

Background  

Ultra-high throughput sequencing technologies provide opportunities both for discovery of novel molecular species and for detailed comparisons of gene expression patterns. Small RNA populations are particularly well suited to this analysis, as many different small RNAs can be completely sequenced in a single instrument run.  相似文献   
153.
154.
155.
156.

Background

Several task-based functional MRI (fMRI) studies have highlighted abnormal activation in specific regions involving the low-level perceptual (auditory, visual, and somato-motor) network in posttraumatic stress disorder (PTSD) patients. However, little is known about whether the functional connectivity of the low-level perceptual and higher-order cognitive (attention, central-execution, and default-mode) networks change in medication-naïve PTSD patients during the resting state.

Methods

We investigated the resting state networks (RSNs) using independent component analysis (ICA) in 18 chronic Wenchuan earthquake-related PTSD patients versus 20 healthy survivors (HSs).

Results

Compared to the HSs, PTSD patients displayed both increased and decreased functional connectivity within the salience network (SN), central executive network (CEN), default mode network (DMN), somato-motor network (SMN), auditory network (AN), and visual network (VN). Furthermore, strengthened connectivity involving the inferior temporal gyrus (ITG) and supplementary motor area (SMA) was negatively correlated with clinical severity in PTSD patients.

Limitations

Given the absence of a healthy control group that never experienced the earthquake, our results cannot be used to compare alterations between the PTSD patients, physically healthy trauma survivors, and healthy controls. In addition, the breathing and heart rates were not monitored in our small sample size of subjects. In future studies, specific task paradigms should be used to reveal perceptual impairments.

Conclusions

These findings suggest that PTSD patients have widespread deficits in both the low-level perceptual and higher-order cognitive networks. Decreased connectivity within the low-level perceptual networks was related to clinical symptoms, which may be associated with traumatic reminders causing attentional bias to negative emotion in response to threatening stimuli and resulting in emotional dysregulation.  相似文献   
157.
MitoTimer     
Fluorescent Timer, or DsRed1-E5, is a mutant of the red fluorescent protein, dsRed, in which fluorescence shifts over time from green to red as the protein matures. This molecular clock gives temporal and spatial information on protein turnover. To visualize mitochondrial turnover, we targeted Timer to the mitochondrial matrix with a mitochondrial-targeting sequence (coined “MitoTimer”) and cloned it into a tetracycline-inducible promoter construct to regulate its expression. Here we report characterization of this novel fluorescent reporter for mitochondrial dynamics. Tet-On HEK 293 cells were transfected with pTRE-tight-MitoTimer and production was induced with doxycycline (Dox). Mitochondrial distribution was demonstrated by fluorescence microscopy and verified by subcellular fractionation and western blot analysis. Dox addition for as little as 1 h was sufficient to induce MitoTimer expression within 4 h, with persistence in the mitochondrial fraction for up to 6 d. The color-specific conformation of MitoTimer was stable after fixation with 4% paraformaldehyde. Ratiometric analysis of MitoTimer revealed a time-dependent transition from green to red over 48 h and was amenable to analysis by fluorescence microscopy and flow cytometry of whole cells or isolated mitochondria. A second Dox administration 48 h after the initial induction resulted in a second round of expression of green MitoTimer. The extent of new protein incorporation during a second pulse was increased by administration of a mitochondrial uncoupler or simvastatin, both of which trigger mitophagy and biogenesis. MitoTimer is a novel fluorescent reporter protein that can reveal new insights into mitochondrial dynamics within cells. Coupled with organelle flow cytometry, it offers new opportunities to investigate mitochondrial subpopulations by biochemical or proteomic methods.  相似文献   
158.

Background and Aims

Increasing evidence has suggested that hepatocellular carcinoma (HCC) might originate from a distinct subpopulation called cancer stem cells (CSCs), which are responsible for the limited efficacy of conventional therapies. We have previously demonstrated that granulin-epithelin precursor (GEP), a pluripotent growth factor, is upregulated in HCC but not in the adjacent non-tumor, and that GEP is a potential therapeutic target for HCC. Here, we characterized its expression pattern and stem cell properties in fetal and cancerous livers.

Methods

Protein expression of GEP in fetal and adult livers was examined in human and mouse models by immunohistochemical staining and flow cytometry. Liver cancer cell lines, isolated based on their GEP and/or ATP-dependent binding cassette (ABC) drug transporter ABCB5 expression, were evaluated for hepatic CSC properties in terms of colony formation, chemoresistance and tumorigenicity.

Results

We demonstrated that GEP was a hepatic oncofetal protein that expressed in the fetal livers, but not in the normal adult livers. Importantly, GEP+ fetal liver cells co-expressed the embryonic stem (ES) cell-related signaling molecules including β-catenin, Oct4, Nanog, Sox2 and DLK1, and also hepatic CSC-markers CD133, EpCAM and ABCB5. Phenotypic characterization in HCC clinical specimens and cell lines revealed that GEP+ cancer cells co-expressed these stem cell markers similarly as the GEP+ fetal liver cells. Furthermore, GEP was shown to regulate the expression of ES cell-related signaling molecules β-catenin, Oct4, Nanog, and Sox2. Isolated GEPhigh cancer cells showed enhanced colony formation ability and chemoresistance when compared with the GEPlow counterparts. Co-expression of GEP and ABCB5 better defined the CSC populations with enhanced tumorigenic ability in immunocompromised mice.

Conclusions

Our findings demonstrate that GEP is a hepatic oncofetal protein regulating ES cell-related signaling molecules. Co-expression of GEP and ABCB5 further enriches a subpopulation with enhanced CSC properties. The current data provide new insight into the therapeutic strategy.  相似文献   
159.
160.
Endocardial to mesenchymal transformation (EMT) is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC) endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1) show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号