首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   11篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   11篇
  2010年   6篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   8篇
  2005年   8篇
  2004年   10篇
  2003年   8篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1974年   2篇
  1973年   2篇
  1954年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
101.
Ulceration of melanoma is associated with neutrophil infiltrates and lower survival rates opposite to non‐ulcerated melanoma. Neutrophils release neutrophil extracellular traps (NETs) that are chromatin structures loaded with antimicrobial proteins. Since NETs have been correlated with tumor progression, we investigated whether NETs appear in melanoma and affect melanoma cells. Indeed, human primary melanoma biopsies revealed neutrophils releasing NETs in all of 27 ulcerated melanomas, whereas NETs were absent in all of 7 non‐ulcerated melanomas. However, the quantity of intratumoral NETs did not correlate with tumor progression of melanoma. Interestingly, in vitro assays showed that melanoma cells attach to NETs via integrin‐mediated adhesion and that NETs inhibit tumor cell migration. Moreover, co‐culturing of NETs and melanoma cells had a cytotoxic effect on melanoma cells resulting in necrosis. Hence, we discovered in vitro an antineoplastic role of NETs in melanoma.  相似文献   
102.
103.
Advances in high-throughput characterization of protein networks in vivo have resulted in large databases of unexplored protein interactions that occur during normal cell function. Their further characterization requires quantitative experimental strategies that are easy to implement in laboratories without specialized equipment. We have overcome many of the previous limitations to thermodynamic quantification of protein interactions, by developing a series of in-solution fluorescence-based strategies. These methods have high sensitivity, a broad dynamic range, and can be performed in a high-throughput manner. In three case studies we demonstrate how fluorescence (de)quenching and fluorescence resonance energy transfer can be used to quantitatively probe various high-affinity protein-DNA and protein-protein interactions. We applied these methods to describe the preference of linker histone H1 for nucleosomes over DNA, the ionic dependence of the DNA repair enzyme PARP1 in DNA binding, and the interaction between the histone chaperone Nap1 and the histone H2A-H2B heterodimer.  相似文献   
104.
Following acetylation, newly synthesized H3-H4 is directly transferred from the histone chaperone anti-silencing factor 1 (Asf1) to chromatin assembly factor 1 (CAF-1), another histone chaperone that is critical for the deposition of H3-H4 onto replicating DNA. However, it is unknown how CAF-1 binds and delivers H3-H4 to the DNA. Here, we show that CAF-1 binds recombinant H3-H4 with 10- to 20-fold higher affinity than H2A-H2B in vitro, and H3K56Ac increases the binding affinity of CAF-1 toward H3-H4 2-fold. These results provide a quantitative thermodynamic explanation for the specific H3-H4 histone chaperone activity of CAF-1. Surprisingly, H3-H4 exists as a dimer rather than as a canonical tetramer at mid-to-low nanomolar concentrations. A single CAF-1 molecule binds a cross-linked (H3-H4)2 tetramer, or two H3-H4 dimers that contain mutations at the (H3-H4)2 tetramerization interface. These results suggest that CAF-1 binds to two H3-H4 dimers in a manner that promotes formation of a (H3-H4)2 tetramer. Consistent with this idea, we confirm that CAF-1 synchronously binds two H3-H4 dimers derived from two different histone genes in vivo. Together, the data illustrate a clear mechanism for CAF-1-associated H3-H4 chaperone activity in the context of de novo nucleosome (re)assembly following DNA replication.  相似文献   
105.
106.

Objective

Reciprocal interaction between bone and glucose metabolism might play a pivotal role in the development of type 2 diabetes. We recently demonstrated that osteocalcin is increased in women with gestational diabetes (GDM) compared to healthy pregnant women and related to enhanced insulin secretion. Here, we aimed to investigate the role of the bone resorption marker CTX and osteopontin (OPN), a key molecule in subclinical inflammation underlying insulin resistance, in gestational diabetes.

Methods

Insulin sensitivity and secretion (derived from OGTT) as well as CTX and osteopontin were investigated in 26 GDM and 52 women with normal glucose tolerance during pregnancy [CON] between 24th and 28th gestational weeks; 24 women also underwent postpartum examination.

Results

CTX was significantly higher in GDM compared to CON (0.44±0.20 vs.0.28±0.12 ng/ml, p<.0001) and positively correlated with osteocalcin (R = 0.64, p<.0001) and parameters of insulin secretion. Osteopontin plasma concentrations were decreased in GDM compared to CON (28.81±22.12 vs.37.68±19.63 ng/ml, p = 0.04), and did not show any relation to insulin secretion or sensitivity, but were significantly correlated with CRP (R = 0.3, p<0.007) and liver enzymes. Twelve weeks after delivery CTX and OPN were increased compared to pregnancy (both p<.0001) and did not differ between GDM and CON.

Conclusion

Our findings support the idea of a tight regulation between bone and glucose metabolism, and suggest, that less curbed CTX during pregnancy might be involved in osteocalcin-mediated amelioration of insulin secretion in GDM. On the other hand, osteopontin was unrelated to insulin resistance in GDM, but associated with inflammatory markers and liver enzymes in all women.  相似文献   
107.

Aims/Hypothesis

Recent evidence suggests a link between myocardial steatosis and diabetic cardiomyopathy. Insulin, as a lipogenic and growth-promoting hormone, might stimulate intramyocardial lipid (MYCL) deposition and hypertrophy. Therefore, the aim of the present study was to investigate the short-term effects of insulin therapy (IT) on myocardial lipid content and morphology in patients with T2DM.

Methods

Eighteen patients with T2DM were recruited (age 56±2 years; HbA1c: 10.5±0.4%). In 10 patients with insufficient glucose control under oral medication IT was initiated due to secondary failure of oral glucose lowering therapy (IT-group), while 8 individuals did not require additional insulin substitution (OT-group). In order to assess MYCL and intrahepatic lipid (IHLC) content as well as cardiac geometry and function magnetic resonance spectroscopy (MRS) and imaging (MRI) examinations were performed at baseline (IT and OT) and 10 days after initiation of IT. Follow up measurements took place 181±49 days after IT.

Results

Interestingly, basal MYCLs were 50% lower in IT- compared to OT-group (0.41±0.12 vs. 0.80±0.11% of water signal; p = 0.034). After 10 days of IT, an acute 80%-rise in MYCL (p = 0.008) was observed, while IHLC did not change. Likewise, myocardial mass (+13%; p = 0.004), wall thickness in end-diastole (+13%; p = 0.030) and concentricity, an index of cardiac remodeling, increased (+28%; p = 0.026). In the long-term MYCL returned to baseline, while IHCL significantly decreased (−31%; p = 0.000). No acute changes in systolic left ventricular function were observed.

Conclusions/Interpretation

The initiation of IT in patients with T2DM was followed by an acute rise in MYCL concentration and myocardial mass.  相似文献   
108.
MacroH2A is a histone variant found in higher eukaryotes localized at the inactive X chromosome and is known to maintain heterochromatic regions in the genome. MacroH2A consists of a conserved histone domain and a macro domain connected by a linker region. To understand the contributions of the three domains to chromatin condensation, we incorporated various constructs of macroH2A into defined nucleosomal arrays and analyzed their impact on in vitro chromatin compaction. The folding and oligomerization properties of arrays containing full-length macroH2A (macroH2A(FL)), macroH2A(1-161) (encompassing the histone domain and linker region), and macroH2A(1-122) (histone domain only) were compared with major-type H2A arrays. Analytical ultracentrifugation and atomic force microscope imaging indicate that macroH2A(1-161)-containing arrays favor condensation under conditions where major-type arrays are nearly fully extended. In contrast, arrays with macroH2A(FL) exhibit behavior similar to that of major-type arrays. This suggests that the linker region of macroH2A facilitates array condensation and that this behavior is inhibited by the macro domain. Furthermore, chimeric major-type H2A arrays containing the macroH2A linker domain (H2A(ML)) exhibited the same condensation properties as macroH2A(1-161) arrays, thus emphasizing the intriguing behavior of the macroH2A linker region.  相似文献   
109.
110.
Starting off with a structure derived from the natural compound multiflorine, a derivatisation program aimed at the discovery and initial characterisation of novel compounds with antidiabetic potential. Design and discovery of the structures was guided by oral bioactivities obtained in oral glucose tolerance tests in mice. 55P0110, one among several new compounds with distinct anti-hyperglycaemic activity, was further examined to characterise its pharmacology and mode of action. Whereas a single oral dose of 55P0110 did not affect basal glycaemia, it markedly improved the glucose tolerance of healthy and diabetic mice (peak blood glucose in glucose tolerance test, mmol/l: healthy mice with 90 mg/kg 55P0110, 17.0±1.2 vs. 10.1±1.1; diabetic mice with 180 mg/kg 55P0110, 23.1±0.9 vs. 11.1±1.4; p<0.001 each). Closer examination argued against retarded glucose resorption from the gut, increased glucose excretion in urine, acute insulin-like or insulin sensitising properties, and direct inhibition of dipeptidyl peptidase-4 as the cause of glucose lowering. Hence, 55P0110 seems to act via a target not exploited by any drug presently approved for the treatment of diabetes mellitus. Whereas the insulinotropic sulfonylurea gliclazide (16 mg/kg) distinctly increased the circulating insulin-per-glucose ratio under basal conditions, 55P0110 (90 mg/kg) lacked such an effect (30 min. after dosing, nmol/mol: vehicle, 2.49±0.27; 55P0110, 2.99±0.35; gliclazide, 8.97±0.49; p<0.001 each vs. gliclazide). Under an exogenous glucose challenge, however, 55P0110 increased this ratio to the same extent as gliclazide (20 min. after glucose feeding: vehicle, 2.53±0.41; 55P0110, 3.80±0.46; gliclazide, 3.99±0.26; p<0.05 each vs. vehicle). By augmenting the glucose stimulated increase in plasma insulin, 55P0110 thus shows distinct anti-hyperglycaemic action in combination with low risk for fasting hypoglycaemia in mice. In summary, we have discovered a novel class of fully synthetic substituted quinazolidines with an attractive pharmacological profile that recommends the structures for further evaluation as candidates for the treatment of diabetes mellitus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号