首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   32篇
  国内免费   22篇
  361篇
  2023年   4篇
  2022年   9篇
  2021年   10篇
  2020年   5篇
  2019年   8篇
  2018年   7篇
  2017年   5篇
  2016年   7篇
  2015年   13篇
  2014年   12篇
  2013年   18篇
  2012年   25篇
  2011年   23篇
  2010年   16篇
  2009年   16篇
  2008年   8篇
  2007年   16篇
  2006年   19篇
  2005年   13篇
  2004年   14篇
  2003年   15篇
  2002年   13篇
  2001年   12篇
  2000年   15篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有361条查询结果,搜索用时 0 毫秒
71.
There has been no extensive characterization of the effects of Ginsenoside Rg1, a pharmacological active component purified from the nature product ginseng, in an Alzheimer's disease mouse model. The well-characterized transgenic Alzheimer disease (AD) mice over expressing amyloid precursor protein (APP)/Aβ (Tg mAPP) and nontransgenic (nonTg) littermates at age of 6 and 9 months were treated with Rg 1 for three months via intraperitoneal injection. Mice were then evaluated for changes in amyloid pathology, neuropathology and behavior. Tg mAPP treated with Rg1 showed a significant reduction of cerebral Aβ levels, reversal of certain neuropathological changes, and preservation of spatial learning and memory, as compared to vehicle-treated mice. Rg1 treatment inhibited activity of γ-secretase in both Tg mAPP mice and B103-APP cells, indicating the involvement of Rg1 in APP regulation pathway. Furthermore, administration of Rg1 enhanced PKA/CREB pathway activation in mAPP mice and in cultured cortical neurons exposed to Aβ or glutamate-mediated synaptic stress. Most importantly, the beneficial effects on attenuation of cerebral Aβ accumulation, improvement in neuropathological and behavioral changes can be extended to the aged mAPP mice, even to 12-13 months old mice that had extensive amyloid pathology and severe neuropathological and cognitive malfunction. These studies indicate that Rg1 has profound multi-faced and neuroprotective effects in an AD mouse model. Rg1 induces neuroprotection through ameliorating amyloid pathology, modulating APP process, improving cognition, and activating PKA/CREB signaling. These findings provide a new perspective for the treatment of AD and demonstrate potential for a new class of drugs for AD treatment.  相似文献   
72.
73.
Lipopolysaccharide (LPS)‐induced sepsis‐associated acute kidney injury (SA‐AKI) is a model of clinical serious care syndrome, with high morbidity and mortality. Tacrolimus (TAC), a novel immunosuppressant that inhibits inflammatory response, plays a pivotal role in kidney diseases. In this study, LPS treated mice and cultured podocytes were used as the models of SA‐AKI in vivo and in vitro, respectively. Medium‐ and high‐dose TAC administration significantly attenuated renal function and renal pathological manifestations at 12, 24 and 48 h after LPS treatment in mice. Moreover, the Toll‐like receptor 4 (TLR4)/myeloid differential protein‐88 (MyD88)/nuclear factor‐kappa (NF‐κB) signalling pathway was also dramatically inhibited by medium‐ and high‐dose TAC administration at 12, 24 and 48 h of LPS treatment mice. In addition, TAC reversed LPS‐induced podocyte cytoskeletal injury and podocyte migratory capability. Our findings indicate that TAC has protective effects against LPS‐induced AKI by inhibiting TLR4/MyD88/NF‐κB signalling pathway and podocyte dysfunction, providing another potential therapeutic effects for the LPS‐induced SA‐AKI.  相似文献   
74.
Takydromus Daudin is a group of Lacertidae lizards with slender bodies and long tails. Half of the Takydromus spp. are endemic to islands of eastern Asia aligned along the Pacific margin of the East Asian continent. This feature offers a good opportunity to study the effects of glaciations and land connections on the speciation of East Asian fauna. We reconstructed the molecular phylogeny of Takydromus species via the mitochondrial 12S rRNA gene. Phylogenetic analyses using maximum-parsimony, neighbor-joining, and maximum-likelihood options do not support a two-subgenera scheme of Takydromus and Platyplacopus proposed earlier. In contrast, the phylogeny of Takydromus species on islands fits the sequential separation of island groups influenced by changes in sea level. The hypothesis in our prediction supports the process of vicariant speciation and multicolonization of grass lizards on eastern Asian islands. At least two obvious colonization events were followed by vicariance events. Because the molecular clock of the 12 rRNA gene was not rejected in our model test, it is possible to estimate times of speciation events. As the most isolated and basal species compared to other temperate and subtropical species of Takydromus, the separation period of T. smaragdinus in the central Ryukyus is the crucial point in estimating the evolutionary rate. Quaternary-origin or Tertiary-origin models are proposed and discussed.  相似文献   
75.
76.
The budding yeast Cdc13-Stn1-Ten1 complex is crucial for telomere protection and has been proposed to resemble the RPA complex structurally and functionally. The Cdc13 homologues in Candida species are unusually small and lack two conserved domains previously implicated in telomere regulation, thus raising interesting questions concerning the mechanisms and evolution of these proteins. In this report, we show that the unusually small Cdc13 homologue in Candida albicans is indeed a regulator of telomere lengths and that it associates with telomere DNA in vivo. We demonstrated high-affinity telomere DNA binding by C. tropicalis Cdc13 (CtCdc13) and found that dimerization of this protein through its OB4 domain is important for high-affinity DNA binding. Interestingly, CtCdc13-DNA complex formation appears to involve primarily recognition of multiple copies of a six-nucleotide element (GGATGT) that is shared by many Candida telomere repeats. We also determined the crystal structure of the OB4 domain of C. glabrata Cdc13, which revealed a novel mechanism of OB fold dimerization. The structure also exhibits marked differences to the C-terminal OB fold of RPA70, thus arguing against a close evolutionary kinship between these two proteins. Our findings provide new insights on the mechanisms and evolution of a critical telomere end binding protein.  相似文献   
77.
78.
79.
Alkylresorcinols are bioactive compounds produced in diverse plant species, with chemical structures combining an aliphatic hydrocarbon chain and an aromatic ring with characteristic hydroxyl substituents. Here, we aimed to isolate and characterize the enzyme that forms the alkylresorcinols accumulating in the cuticular wax on the surface of all above‐ground organs of rye. Based on sequence homology with other type‐III polyketide synthases, a candidate alkylresorcinol synthase was cloned. Yeast heterologous expression showed that the enzyme, ScARS, is highly specific for the formation of the aromatic resorcinol ring structure, through aldol condensation analogous to stilbene synthases. The enzyme accepts long‐chain and very‐long‐chain acyl‐CoA starter substrates, preferring saturated over unsaturated chains. It typically carries out three rounds of condensation with malonyl‐CoA prior to cyclization, with only very minor activity for a fourth round of malonyl‐CoA condensation and cyclization to 5‐(2′‐oxo)‐alkylresorcinols or 5‐(2′‐hydroxy)‐alkylresorcinols. Like other enzymes involved in cuticle formation, ScARS is localized to the endoplasmic reticulum. ScARS expression patterns were found correlated with alkylresorcinol accumulation during leaf development and across different rye organs. Overall, our results thus suggest that ScARS synthesizes the cuticular alkylresorcinols found on diverse rye organ surfaces.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号