首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1315篇
  免费   99篇
  2023年   4篇
  2022年   9篇
  2021年   25篇
  2020年   22篇
  2019年   20篇
  2018年   26篇
  2017年   22篇
  2016年   42篇
  2015年   51篇
  2014年   71篇
  2013年   93篇
  2012年   124篇
  2011年   92篇
  2010年   67篇
  2009年   50篇
  2008年   86篇
  2007年   88篇
  2006年   57篇
  2005年   51篇
  2004年   56篇
  2003年   47篇
  2002年   43篇
  2001年   19篇
  2000年   18篇
  1999年   16篇
  1998年   9篇
  1997年   8篇
  1996年   9篇
  1995年   7篇
  1994年   9篇
  1993年   8篇
  1992年   4篇
  1991年   18篇
  1990年   9篇
  1989年   11篇
  1988年   11篇
  1987年   5篇
  1985年   9篇
  1984年   14篇
  1983年   9篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   8篇
  1974年   4篇
  1973年   4篇
  1967年   4篇
  1966年   3篇
排序方式: 共有1414条查询结果,搜索用时 15 毫秒
31.
Genotype and water deficit effects on leaf 2-DE protein profiles of two Populus deltoides × Populus nigra, cv. ‘Agathe_F’ and ‘Cima’, were analysed over a short-term period of 18 days in glasshouse using 4-month-old rooted cuttings and over a long-lasting period of 86 days in open field using 4-year-old rooted cuttings. Leaf proteomes were analyzed using two-dimensional gel electrophoresis, and proteins were identified after database searching from MS peptide spectra.A reliable genotype effect was observed in the leaf proteome over experiment locations, water regimes and sampling dates. Quantitative differences between genotypes were found. Most of them corresponded to proteins matching isoforms or post-translational modification variants. However, ‘Cima’ displayed the highest abundance of antioxidant enzymes.In response to water deficit, about 10% of the reproducible spots significantly varied regardless of the experiment location, among which about 25% also displayed genotype-dependent variations. As a whole, while ‘Cima’ differed from ‘Agathe_F’ by increased abundance of enzymes involved in photorespiration and in oxidative stress, ‘Agathe_F’ was mainly differentiated by increased abundance of enzymes involved in photosynthesis.  相似文献   
32.
Two hairpin hexa(N-methylpyrrole)carboxamide DNA minor groove binders (MGB) were linked together via their N-termini in head-to-head orientation. Complex formation between these bis-MGB conjugates and target DNA has been studied using DNase I footprinting, circular dichroism, thermal dissociation, and molecular modeling. DNase I footprint revealed binding of these conjugates to all the sites of 492 b.p. DNA fragment containing (A/T)(n)X(m)(A/T)(p) sequences, where n>3, p>3; m=1,2; X = A,T,G, or C. Binding affinity depended on the sequence context of the target. CD experiments and molecular modeling showed that oligo(N-methylpyrrole)carboxamide moieties in the complex form two short antiparallel hairpins rather than a long parallel head-to-head hairpin. Binding of bis-MGB also stabilized a target duplex thermodynamically. Sequence specificity of bis-MGB/DNA binding was validated using bis-conjugates of sequence-specific hairpin (N-methylpyrrole)/(N-methylimidazole) carboxamides. In order to increase the size of recognition sequence, the conjugates of bis-MGB with triplex-forming oligonucleotides (TFO) were synthesized and compared to TFO conjugated with single MGB hairpin unit. Bis-MGB-oligonucleotide conjugates also bind to two blocks of three and more A.T/T.A pairs similarly to bis-MGB alone, independently of the oligonucleotide moiety, but with lower affinity. However, the role of TFO in DNA recognition was demonstrated for mono-MGB-TFO conjugate where the binding was detected mainly in the area of the target sequence consisting of both MGB and TFO recognition sites. Basing on the molecular modeling, three-dimensional models of both target DNA/bis-MGB and target DNA/TFO-bis-MGB complexes were built, where bis-MGB forms two antiparallel hairpins. According to the second model, one MGB hairpin is in the minor groove of 5'-adjacent A/T sequence next to the triplex-forming region, whereas the other one occupies the minor groove of the TFO binding polypurine tract. All these data together give a key information for the construction of MGB-MGB and MGB-oligonucleotide conjugates possessing high specificity and affinity for the target double-stranded DNA.  相似文献   
33.
ABSTRACT: BACKGROUND: Next-Generation Sequencing has revolutionized our approach to ancient DNA (aDNA) research, by providing complete genomic sequences of ancient individuals and extinct species. However, the recovery of genetic material from long-dead organisms is still complicated by a number of issues, including post-mortem DNA damage and high levels of environmental contamination. Together with error profiles specific to the type of sequencing platforms used, these specificities could limit our ability to map sequencing reads against modern reference genomes and therefore limit our ability to identify endogenous ancient reads, reducing the efficiency of shotgun sequencing aDNA. RESULTS: In this study, we compare different computational methods for improving the accuracy and sensitivity of aDNA sequence identification, based on shotgun sequencing reads recovered from Pleistocene horse extracts using Illumina GAIIx and Helicos Heliscope platforms. We show that the performance of the Burrows Wheeler Aligner (BWA), that has been developed for mapping of undamaged sequencing reads using platforms with low rates of indel-types of sequencing errors, can be employed at acceptable run-times by modifying default parameters in a platform-specific manner. We also examine if trimming likely damaged positions at read ends can increase the recovery of genuine aDNA fragments and if accurate identification of human contamination can be achieved using a strategy previously suggested based on best hit filtering. We show that combining our different mapping and filtering approaches can increase the number of high-quality endogenous hits recovered by up to 33%. CONCLUSIONS: We have shown that Illumina and Helicos sequences recovered from aDNA extracts could not be aligned to modern reference genomes with the same efficiency unless mapping parameters are optimized for the specific types of errors generated by these platforms and by post-mortem DNA damage. Our findings have important implications for future aDNA research, as we define mapping guidelines that improve our ability to identify genuine aDNA sequences, which in turn could improve the genotyping accuracy of ancient specimens. Our framework provides a significant improvement to the standard procedures used for characterizing ancient genomes, which is challenged by contamination and often low amounts of DNA material.  相似文献   
34.
Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ) genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues.  相似文献   
35.
36.
Cell adhesion on a biomaterial is an important phase of the cell-material interactions and the quality of this phase governs the success of the biomaterial integration. Understanding of the phenomena of cell adhesion and in particular understanding of cell adhesion on biomaterials is of crucial importance for the development of new biomaterials with excellent biocompatibility. One of the physical quantitative indexes to evaluate the quality of cell-material adhesion is its strength. Determining the strength of adhesive bonds requires applying external forces to the cells. Thus, a few methods have been developed to evaluate the strength of cell-material adhesion (micropipette, microplates, microcantilever, ...). These methods apply shear forces on adherent cells. The aim of our work is the development of a new ultrasonic characterization method of cellular adhesion on substrates. With our method, longitudinal acoustic waves are applied on cell culture to impose a longitudinal strain on cells. Only the cells subjected to a sufficient level of strain will be detached from the substrate. The idea is to correlate cell detachment rate to the longitudinal strain threshold supported by cells. From this result, we can deduce the critical force just sufficient to detach the cell. This global method can be adapted for different cell types and for different substrates. This method can provide an evaluation of the effect of functionalization on substrates. The technique is investigated for the 200 kHz ultrasound frequency. An insonificator adapted to the use of cell culture boxes was developed and calibrated. Tests were carried out on a glass substrate with or without biological conditioning. We used the MC3T3-E1 osteoblastic cell line. Our results to date provide the value of the necessary force to detach with reproducibility osteoblastic cells from glass.  相似文献   
37.
Human KIN17 is a 45-kDa eukaryotic DNA- and RNA-binding protein that plays an important role in nuclear metabolism and in particular in the general response to genotoxics. Its amino acids sequence contains a zinc finger motif (residues 28-50) within a 30-kDa N-terminal region conserved from yeast to human, and a 15-kDa C-terminal tandem of SH3-like subdomains (residues 268-393) only found in higher eukaryotes. Here we report the solution structure of the region 51-160 of human KIN17. We show that this fragment folds into a three-alpha-helix bundle packed against a three-stranded beta-sheet. It belongs to the winged helix (WH) family. Structural comparison with analogous WH domains reveals that KIN17 WH module presents an additional and highly conserved 3(10)-helix. Moreover, KIN17 WH helix H3 is not positively charged as in classical DNA-binding WH domains. Thus, human KIN17 region 51-160 might rather be involved in protein-protein interaction through its conserved surface centered on the 3(10)-helix.  相似文献   
38.
Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high‐throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long‐term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human‐induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro‐evolutionary response of trees to climate change and human forest management.  相似文献   
39.
Multigene transformation (MGT) is becoming routine in plant biotechnology as researchers seek to generate more complex and ambitious phenotypes in transgenic plants. Every nuclear transgene requires its own promoter, so when coordinated expression is required, the introduction of multiple genes leads inevitably to two opposing strategies: different promoters may be used for each transgene, or the same promoter may be used over and over again. In the former case, there may be a shortage of different promoters with matching activities, but repetitious promoter use may in some cases have a negative impact on transgene stability and expression. Using illustrative case studies, we discuss promoter deployment strategies in transgenic plants that increase the likelihood of successful and stable multiple transgene expression.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号