首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   875篇
  免费   89篇
  国内免费   2篇
  966篇
  2022年   9篇
  2021年   15篇
  2020年   9篇
  2019年   15篇
  2018年   19篇
  2017年   14篇
  2016年   36篇
  2015年   42篇
  2014年   46篇
  2013年   52篇
  2012年   61篇
  2011年   61篇
  2010年   30篇
  2009年   37篇
  2008年   39篇
  2007年   66篇
  2006年   53篇
  2005年   66篇
  2004年   40篇
  2003年   50篇
  2002年   57篇
  2001年   11篇
  2000年   8篇
  1999年   5篇
  1998年   19篇
  1997年   10篇
  1996年   11篇
  1995年   3篇
  1994年   6篇
  1993年   9篇
  1992年   2篇
  1990年   4篇
  1988年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1974年   3篇
  1973年   2篇
  1971年   3篇
  1966年   2篇
  1965年   3篇
  1963年   2篇
  1962年   2篇
  1960年   3篇
  1957年   3篇
  1956年   2篇
排序方式: 共有966条查询结果,搜索用时 15 毫秒
21.
To probe the size of the ion channel formed by Pseudomonas syringae lipodepsipeptide syringomycin E, we use the partial blockage of ion current by penetrating poly(ethylene glycol)s. Earlier experiments with symmetric application of these polymers yielded a radius estimate of approximately 1 nm. Now, motivated by the asymmetric non-ohmic current-voltage curves reported for this channel, we explore its structural asymmetry. We gauge this asymmetry by studying the channel conductance after one-sided addition of differently sized poly(ethylene glycol)s. We find that small polymers added to the cis-side of the membrane (the side of lipodepsipeptide addition) reduce channel conductance much less than do the same polymers added to the trans-side. We interpret our results to suggest that the water-filled pore of the channel is conical with cis- and trans-radii differing by a factor of 2-3 and that the smaller cis-radius is in the 0.25-0.35 nm range. In symmetric, two-sided addition, polymers entering the pore from the larger opening dominate blockage.  相似文献   
22.
Indirect immunofluorescent microscopy was used to study the distribution of elongation factor 2 (eEF-2) in fixed human skin diploid and mouse embryo fibroblasts. It was found earlier that some of the eEF-2 ribosomes and initiation factor 2 (eIF-2) are co-localized with a part of the actin microfilament bundles in these cells (Gavrilova et al., 1987; Shestakova et al., 1991). Here it has been shown that inhibition of protein synthesis either by inactivation of eEF-2 itself with diphtheria toxin or by inactivation of ribosomes with ricin does not abolish the distribution of eEF-2 along the actin microfilament bundles. At the same time, the disassembly of actin microfilaments by cytochalasin D results also in the disappearance of eEF-2-carrying threads. This means that the eEF-2-carrying threads do not exist per se, and that the organization of eEF-2 in visible "filaments" depends upon the integrity of the actin cytoskeleton.  相似文献   
23.
Obelin from the hydroid Obelia longissima and aequorin are members of a subfamily of Ca(2+)-regulated photoproteins that is a part of the larger EF-hand calcium binding protein family. On the addition of Ca(2+), obelin generates a blue bioluminescence emission (lambda(max) = 485 nm) as the result of the oxidative decarboxylation of the bound substrate, coelenterazine. The W92F obelin mutant is noteworthy because of the unusually high speed with which it responds to sudden changes of [Ca(2+)] and because it emits violet light rather than blue due to a prominent band with lambda(max) = 405 nm. Increase of pH in the range from 5.5 to 8.5 and using D(2)O both diminish the contribution of the 405 nm band, indicating that excited state proton transfer is involved. Fluorescence model studies have suggested the origin of the 485 nm emission as the excited state of an anion of coelenteramide, the bioluminescence reaction product, and 405 nm from the excited neutral state. Assuming that the dimensions of the substrate binding cavity do not change during the excited state formation, a His22 residue within hydrogen bonding distance to the 6-(p-hydroxy)-phenyl group of the excited coelenteramide is a likely candidate for accepting the phenol proton to produce an ion-pair excited state, in support of recent suggestions for the bioluminescence emitting state. The proton transfer could be impeded by removal of the Trp92 H-bond, resulting in strong enhancement of a 405 nm band giving the violet color of bioluminescence. Comparative analysis of 3D structures of the wild-type (WT) and W92F obelins reveals that there are structural displacements of certain key Ca(2+)-ligating residues in the loops of the two C-terminal EF hands as well as clear differences in hydrogen bond networks in W92F. For instance, the hydrogen bond between the side-chain oxygen atom of Asp169 and the main-chain nitrogen of Arg112 binds together the incoming alpha-helix of loop III and the exiting alpha-helix of loop IV in WT, providing probably concerted changes in these EF hands on calcium binding. But this linkage is not found in W92F obelin. These differences apparently do not change the overall affinity to calcium of W92F obelin but may account for the kinetic differences between the WT and mutant obelins. From analysis of the hydrogen bond network in the coelenterazine binding cavity, it is proposed that the trigger for bioluminescence reaction in these Ca(2+)-regulated photoproteins may be a shift of the hydrogen bond donor-acceptor separations around the coelenterazine-2-hydroperoxy substrate, initiated by small spatial adjustment of the exiting alpha-helix of loop IV.  相似文献   
24.
Spatial organization of wild-type (strain U1) tobacco mosaic virus (TMV) and of the temperature-sensitive TMV ts21-66 mutant was compared by tritium planigraphy. The ts21-66 mutant contains two substitutions in the coat protein (Ile21-->Thr and Asp66-->Gly) and, in contrast with U1, induces a hypersensitive response (formation of necroses) on the leaves of plants bearing a host resistance gene N' (for example Nicotiana sylvestris); TMV U1 induces systemic infection (mosaic) on the leaves of such plants. Tritium distribution along the coat protein (CP) polypeptide chain was determined after labelling of both isolated CP preparations and intact virions. In the case of the isolated low-order (3-4S) CP aggregates no reliable differences in tritium distribution between U1 and ts21-66 were found. But in labelling of the intact virions a significant difference between the wild-type and mutant CPs was observed: the N-terminal region of ts21-66 CP incorporated half the amount of tritium than the corresponding region of U1 CP. This means that in U1 virions the CP N-terminal segment is more exposed on the virion surface than in ts21-66 virions. The possibility of direct participation of the N-terminal tail of U1 CP subunits in the process of the N' hypersensitive response suppression is discussed.  相似文献   
25.
The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the prokaryotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.  相似文献   
26.
27.
Tyr72 is located at the active site of tryptophanase (Trpase) from Proteus vulgaris. For the wild-type Trpase Tyr72 might be considered as the general acid catalyst at the stage of elimination of the leaving groups. The replacement of Tyr72 by Phe leads to a decrease in activity for L-tryptophan by 50,000-fold and to a considerable rearrangement of the active site of Trpase. This rearrangement leads to an increase of room around the alpha-C atom of any bound amino acid, such that covalent binding of alpha-methyl-substituted amino acids becomes possible (which cannot be realized in wild-type Trpase). The changes in reactivities of S-alkyl-L-cysteines provide evidence for an increase of congestion in the proximity of their side groups in the mutant enzyme as compared to wild-type enzyme. The observed alteration of catalytic properties in a large degree originates from a conformational change in the active site. The Y72F Trpase retains significant activity for L-serine, which allowed us to conclude that in the mutant enzyme, some functional group is present which fulfills the role of the general acid catalyst in reactions associated with elimination of small leaving groups.  相似文献   
28.
The hematopoietic stem and progenitor cell (HSPC) compartment is subject to extensive quantitative genetic variation. We have previously shown that TGF-beta2 at low concentrations enhances flt3 ligand-induced growth of HSPCs, while it is potently antiproliferative at higher concentrations. This in vitro enhancing effect was subject to quantitative genetic variation, for which a quantitative trait locus (QTL) was tentatively mapped to chromosome 4 (chr.4). Tgfb2(+/-) mice have a smaller and more slowly cycling HSPC compartment, which has a decreased serial repopulation capacity, and are less susceptible to the lethal effect of high doses of 5-fluorouracil. To unequivocally demonstrate that these phenotypes can be attributed to the enhancing effect of TGF-beta2 on HSPC proliferation observed in vitro and are therefore subject to mouse strain-dependent variation as well, we generated congenic mice where the telomeric region of chr.4 was introgressed from DBA/2 into C57BL/6 mice. In these mice, the enhancing effect of TGF-beta2 on flt3 signaling, but not the generic antiproliferative effect of high concentrations of TGF-beta2, was abrogated, confirming the location of this QTL, which we named tb2r1, on chr.4. These mice shared a smaller and more slowly cycling HSPC compartment and increased 5-fluorouracil resistance but not a decreased serial repopulation capacity with Tgfb2(+/-) mice. The concordance of phenotypes between Tgfb2(+/-) and congenic mice indicates that HSPC frequency and cycling are regulated by tb2r1, while an additional QTL in the telomeric region of chr.4 may regulate the serial repopulation capacity of hematopoietic stem cells.  相似文献   
29.
The nuclear factor E2-related factor 2 (Nrf2) plays an important role in cellular protection against cancer, renal, pulmonary, cardiovascular and neurodegenerative diseases where oxidative stress and inflammation are common conditions. The Nrf2 regulates the expression of detoxifying enzymes by recognizing the human Antioxidant Response Element (ARE) binding site and it can regulate antioxidant and anti-inflammatory cellular responses, playing an important protective role on the development of the diseases. Studies designed to investigate how effective Nrf2 activators or modulators are need to be initiated. Several recent studies have shown that nutritional compounds can modulate the activation of Nrf2–Keap1 system. This review aims to discuss some of the key nutritional compounds that promote the activation of Nrf2, which may have impact on the human health.  相似文献   
30.
Abstract

Random amplified polymorphic DNAs (RAPDs) were used to study the genetic variation of Pyrenophora tritici-repentis isolates causing wheat tan spot. Two independent experiments were conducted in 2002 – 2003. In 2002, 40 isolates collected in Russia (Krasnodar region, Bashkiria), Germany, and the Czech Republic were studied and 35 unique RAPD genotypes were identified. Most of the genetic variation (72%) was observed within populations and 28% between them. In 2003, 69 new isolates from Russia (Dagestan, North Osetia, Bashkiria), Germany, and the Czech Republic were studied and 47 unique RAPD genotypes were identified. As in 2002, most of the genetic variation (75%) was observed within populations and 25% between them. Total gene diversity in each group ranged from 0.67 – 1.00 for 2002 and was 1.00 for 2003. The average gene diversity was estimated between 0.13 and 0.20 in 2002 and between 0.07 and 0.18 in 2003. A dendrogramme based on genetic distances between isolates illustrates that the variation is distributed on a small scale (0.3 – 4.0%). Estimated FST values and clustering of isolates on dendrogrammes suggest that groups of isolates from Bashkiria and groups of isolates from Dagestan and North Osetia are separated from others and may be considered as different geographical populations. No clear differentiation between isolates from other sites was revealed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号