首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   91篇
  国内免费   2篇
  966篇
  2022年   9篇
  2021年   15篇
  2020年   9篇
  2019年   15篇
  2018年   19篇
  2017年   14篇
  2016年   36篇
  2015年   42篇
  2014年   46篇
  2013年   52篇
  2012年   61篇
  2011年   61篇
  2010年   30篇
  2009年   37篇
  2008年   39篇
  2007年   66篇
  2006年   53篇
  2005年   66篇
  2004年   40篇
  2003年   50篇
  2002年   57篇
  2001年   11篇
  2000年   8篇
  1999年   5篇
  1998年   19篇
  1997年   10篇
  1996年   11篇
  1995年   3篇
  1994年   6篇
  1993年   9篇
  1992年   2篇
  1990年   4篇
  1988年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1974年   3篇
  1973年   2篇
  1971年   3篇
  1966年   2篇
  1965年   3篇
  1963年   2篇
  1962年   2篇
  1960年   3篇
  1957年   3篇
  1956年   2篇
排序方式: 共有966条查询结果,搜索用时 15 毫秒
101.
Acute kidney injury (AKI) is an important health problem and can be caused by number of factors. The use of aminoglycosides, such as gentamicin, is one of these factors. Recently, an effort has been made to find biomarkers to guide treatment protocols. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to estimate the contents of Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn in serum and urine of the healthy, AKI, and spontaneous recovery (SR) groups of animals. The animal model of AKI and SR was validated by measuring serum and urinary urea and creatinine. The quantitative determination of the elements showed a decrease in serum levels of Ca, and Fe in the AKI group (P<0.01 vs. healthy), with a return to normal levels in the SR group, without a significant difference between the healthy and SR groups. In the urine samples, there was a decrease in P and Na levels in the AKI group (P<0.001 and P<0.01 vs. healthy), but Ca levels were increased in this group compared with the healthy and SR groups (P<0.01). These findings indicate that mineral elements might be useful as biomarkers for AKI.  相似文献   
102.
Transformation of polychlorinated biphenyls was studied using different strains of in vitro cultured cells of horseradish (Armoracia rusticana L.). Time and concentration dependence of this process and production of intracellular and extracellular peroxidases were measured with differentiated shooty teratoma culture K54. The yield of PCB transformation and the viability of the cells were highly dependent on PCB concentration. 100 ppm PCB totally inhibited growth of the cells, and reduced their metabolism of xenobiotics. Experiments with a peroxidase (POX) inhibitor, propylgallate, and a cytochrome P450 inhibitor, aminobenztriazole, indicated the involvement of both enzymatic systems in PCB metabolism.  相似文献   
103.
The effect of aeration level and iron concentration on Azotobacter chroococcum 23 growth, PHB accumulation and antioxidative enzyme activities was investigated in shake flask experiments. Biomass yield and carbon source conversation coefficients increased in the presence of iron in the growth medium and under decreased aeration. The highest biomass production was observed for the culture grown in a medium with 36 μM of initial iron concentration and moderate aeration level. The highest PHB accumulation level (70–72% from cell dry weight) under our experimental conditions was observed at decreased aeration in the growth medium with 180 μM of initial iron concentration. Results obtained prove that both aeration level and iron supply have a marked influence on the activity of SOD and catalase. Bearing in mind the necessity of iron for the synthesis of both enzymes, only catalase showed a specific dependence on the intracellular iron accumulation level.  相似文献   
104.
Nitrate reductase (NR) induction is enhanced by exogenously supplied sucrose in excised pea roots exposed to both exogenous nitrate and exogenous nitrite. NR synthesis is preferentially supported by sugars transported to the cells at the moment, however NR induction can take place for some time without exogenous sugar influx if roots are saturated with sugars during precultivation. Steady high NR levels are dependent on steady sugar and nitrate influxes. NR induction is low in roots precultivated for 20 h without sucrose although sugar content is still high in them. This suggests that compartmentation of sugars in the cells is of major importance during NR induction. Total nitrate content in roots exposed to nitrate is not influenced by sucrose supplied together with nitrate. Some nitrite is oxidized to nitrate in roots exposed to exogenous nitrite ; we assume that this nitrate is responsible for NR induction. Our results indicate that sugars, besides many indirect effects on NR induction, may also directly influence NR synthesis either as coinducers or as derepressors of NR synthesis. Our results further show that NR is not a product-inducible enzyme.  相似文献   
105.
Sucking duration in ungulates does not only mean milk transfer, but is also associated with maternal care in general. It seems to be a reflection of offspring demand rather than solely milk transfer rate. Thus, the objective of this study was to discriminate between sucking and allosucking (i.e. sucking non-maternal hind) behaviour in red deer according to the sucking duration.We hypothesized that: (1) calves should suck longer from their mothers than allosuck from non-maternal hinds; (2) sucking duration of calves frequently nursed by a particular non-maternal hind should be longer than that of calves occasionally allonursed; (3) sucking duration should be longer for bouts including one calf than two or more calves sucking simultaneously; (4) male calves should suck and allosuck longer than female calves; and (5) primiparous hinds should nurse and allonurse longer than multiparous hinds. We observed sucking behaviour of 25 hinds and their 38 calves (from birth until the youngest calf reached one month of age) in two seasons. We recorded 1730 sucking bouts, of which 11.62% in the first season and 4.37% in the second season were non-filial. The duration of filial sucking was significantly longer than non-filial sucking. A large individual variance in the incidence of non-filial sucking in both the calves and hinds was found. Therefore, the non-filial hind–calf pairs were categorized in two clusters according to the frequency of nursing non-filial calves for one hind in relationship to all nursing events for this hind by a cluster analysis (PROC CLUSTER, SAS). We used a general linear mixed model, GLMM (PROC MIXED, SAS) to test the influence of hind relationship to the nursed calf (filial, frequently allosucking non-filial, or occasionally allosucking non-filial pair). Sucking duration of occasionally allosucking non-filial calves was only marginally different from that of filial calves. There was no difference between the two groups of non-filial calves. Multiple sucking bouts were shorter than those with one calf. Male calves sucked longer than female calves; however, the greatest difference was recorded between frequently allosucking non-filial pairs of both sexes. Frequently allosucking non-filial males sucked the longest and differently from occasionally allosucking non-filial males. Frequently allosucking non-filial females sucked the shortest and differently from filial calves of both sexes. It is more likely that allosucking seems to be more important for male rather than female calves.Therefore, it is concluded that allosucking calves differ in their sucking behaviour and two types of allosuckers (frequent and occasional) should be taken into account when analyzing allosuckling behaviour.  相似文献   
106.
The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the prokaryotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.  相似文献   
107.
Filamentous fungi synthesize bioactive secondary metabolites with major human health and economic impacts. Little is known about the mechanisms that mediate the export of these metabolites to the cell exterior. Aspergillus parasiticus synthesizes aflatoxin, a secondary metabolite that is one of the most potent naturally occurring carcinogens known. We previously demonstrated that aflatoxin is synthesized and compartmentalized in specialized vesicles called aflatoxisomes and that these subcellular organelles also play a role in the export process. In the current study, we tested the hypothesis that aflatoxisomes fuse with the cytoplasmic membrane to facilitate the release of aflatoxin into the growth environment. Microscopic analysis of A. parasiticus grown under aflatoxin-inducing and non-aflatoxin-inducing conditions generated several lines of experimental evidence that supported the hypothesis. On the basis of the evidence, we propose that export of the mycotoxin aflatoxin in Aspergillus parasiticus occurs by exocytosis, and we present a model to illustrate this export mechanism.Secondary metabolites are chemically diverse natural products synthesized by plants, fungi, bacteria, algae, and animals. Secondary metabolites have an enormous impact on humans. Antibiotics, for example, are essential elements of the multibillion-dollar pharmaceutical industry, whereas mycotoxins cause hundreds of millions of dollars in damage to agriculture annually (11, 15). These chemicals help the producing organism to survive nutrient limitation (16). They also contribute to cellular defense mechanisms and development (11, 12), reduce cellular oxidative stress (10), and help maintain cellular homeostasis by regulating carbon flow in the cell (17).Many fungal secondary metabolites are exported outside the cell; examples include antibiotics and mycotoxins (3, 14). We and others conducted extensive studies on the regulation of fungal secondary metabolism at the molecular (11, 15) and cellular (3, 7) levels. However, little is known about the mechanisms that mediate secondary metabolite export or why export occurs.The filamentous fungus Aspergillus parasiticus produces aflatoxin, a secondary metabolite and the most potent naturally occurring carcinogen known. More than 90% of aflatoxin is exported to the cell exterior (3), making A. parasiticus an excellent model for studying secondary metabolite export. We recently demonstrated that specialized trafficking vesicles called aflatoxisomes play a key role in aflatoxin synthesis and export (3). As synthesis initiates, vesicle-vacuole fusion is downregulated by the global regulator Velvet, resulting in the accumulation of aflatoxisomes which contain at least the last two functional enzymes in the aflatoxin pathway and sequester aflatoxin (3). Treatments that block vesicle-vacuole fusion increase the number of aflatoxisomes, increase the quantity of aflatoxin accumulated in aflatoxisomes, and increase aflatoxin export to the cell exterior (3). On the basis of these previous observations, we hypothesized that aflatoxisomes play a direct role in aflatoxin export.Vesicle-mediated export could theoretically occur by one (or more) of at least three mechanisms (Fig. 1). (i) Vesicles pass across the cytoplasmic membrane intact and “shuttle” their contents into the external environment. This proposed mechanism mediates virulence factor release in Cryptococcus neoformans and Histoplasma capsulatum (1) during pathogenesis. (ii) Vesicles fuse to the cytoplasmic membrane and “pump” vesicle contents to the exterior using transporter proteins similar to those that mediate resistance to antifungal agents (4, 5). (iii) Vesicles fuse with the cytoplasmic membrane, which evaginates, bursts, and “blasts” vesicle contents to the exterior. This process is similar to exocytosis, a proposed secretory mechanism for specific proteins in filamentous fungi (18). We conducted the current study to determine which, if any, of these possible mechanisms most accurately reflects the process of aflatoxin export in A. parasiticus.Open in a separate windowFig. 1.Theoretical models for vesicle-mediated export. Aflatoxigenic vesicles (aflatoxisomes) arise due to downregulation of tethering complex (Tc) activity mediated by VeA (1). Aflatoxin synthesized in aflatoxisomes could theoretically be released to the cell exterior by one or more of three mechanisms: the shuttle (in which aflatoxisomes shuttle cargo across cytoplasmic membrane), pump (in which transmembrane transporter [Tp] proteins mediate the release of secondary metabolites as vesicles adhere to the inner surface of the cytoplasmic membrane), and burst-and-blast (in which vesicles protrude from the cell surface and blast their cargo into the medium) mechanisms. PM, plasma membrane.  相似文献   
108.
We have previously shown that immunization of C57BL/6 mice, prone to spontaneous development of experimental autoimmune encephalomyelitis (EAE), with three antigens (MOG35-55, DNA-histone complex or DNA-methylated BSA complex), alters the differentiation profiles of bone marrow haematopoietic stem cells (HSCs). These are associated with the production of autoantibodies (auto-Abs) against these antigens and the formation of abzymes hydrolysing DNA, MOG, myelin basic protein (MBP) and histones. Immunization of mice with antigens accelerates the development of EAE. This work is the first to analyse the ratio of auto-Abs without and with catalytic activities at different stages of EAE development (onset, acute and remission phases) after immunization of mice with the three specific antigens. Prior to immunization and during spontaneous in-time development of EAE, the concentration of auto-Abs against MBP, MOG, histones and DNA and activities of IgG antibodies in the hydrolysis of substrates increased in parallel; correlation coefficients = +0.69-0.94. After immunization with MOG, DNA-histone complex or DNA-met-BSA complex, both positive (from +0.13 to +0.98) and negative correlations (from −0.09 to −0.69) were found between these values. Our study is the first showing that depending on the antigen, the relative amount of harmful auto-Abs without and abzymes with low or high catalytic activities may be produced only at onset and in acute or remission phases of EAE. The antigen governs the EAE development rate, whereby the ratio of auto-Abs without catalytic activity and with enzymatic activities of harmful abzymes hydrolysing MBP, MOG, histones and DNA varies strongly between different disease phases.  相似文献   
109.
The decline in activity energy expenditure underlies a range of age-associated pathological conditions, neuromuscular and neurological impairments, disability, and mortality. The majority (90%) of the energy needs of the human body are met by mitochondrial oxidative phosphorylation (OXPHOS). OXPHOS is dependent on the coordinated expression and interaction of genes encoded in the nuclear and mitochondrial genomes. We examined the role of mitochondrial genomic variation in free-living activity energy expenditure (AEE) and physical activity levels (PAL) by sequencing the entire (~16.5 kilobases) mtDNA from 138 Health, Aging, and Body Composition Study participants. Among the common mtDNA variants, the hypervariable region 2 m.185G>A variant was significantly associated with AEE (p=0.001) and PAL (p=0.0005) after adjustment for multiple comparisons. Several unique nonsynonymous variants were identified in the extremes of AEE with some occurring at highly conserved sites predicted to affect protein structure and function. Of interest is the p.T194M, CytB substitution in the lower extreme of AEE occurring at a residue in the Qi site of complex III. Among participants with low activity levels, the burden of singleton variants was 30% higher across the entire mtDNA and OXPHOS complex I when compared to those having moderate to high activity levels. A significant pooled variant association across the hypervariable 2 region was observed for AEE and PAL. These results suggest that mtDNA variation is associated with free-living AEE in older persons and may generate new hypotheses by which specific mtDNA complexes, genes, and variants may contribute to the maintenance of activity levels in late life.  相似文献   
110.
Four yellow-pigmented, gram-negative, chemoorganotrophic aerobic bacteria were isolated from starfish Stellaster equestris (strains 022-2-10T, 022-2-9, and 022-2-12) and soft coral (unidentified species) (strain 022-4-7) collected in the South China Sea. 16S rRNA gene sequence-based analyses of the new organisms revealed that Erythrobacter spp. were the closest relatives and shared the highest similarity of 98.7% to E. citreus, 98.5% to E. flavus, 97.9% to E. litoralis and 97.6% to E. longus. The novel organisms were tolerant to 3-6% NaCl, grew between 10 degrees C and 40 degrees C, and were not able to degrade gelatin, casein, and agar, while degraded Tween 80. Two strains (022-2-9 and 022-2-12) could weakly degrade starch. All strains produced a large pool of carotenoids and did not have Bacteriochlorophyll a. Phosphatidylethanolamine (30-36%), phosphatidylglycerol (39-46%), and phosphatidylcholine (21-27%) were the predominant phospholipids. Sphingoglycolipid was not detected. The major fatty acids were 16:0 (6-11%), 16:1omega7 (12-15%), and 18:1omega7 (46-49%). The two-hydroxy fatty acids, 13:0-2OH, 14:0-2OH, 15:0-2OH, 16:0-2OH were also present. The G + C content of the DNAs ranged from 61 to 62 mol%. The level of DNA similarity among four strains was conspecific and ranged from 94% to 98%. Even though new strains and other species of the genus had rather high level of 16S rRNA gene sequence similarities, DNA-DNA hybridization experiments showed only 33-39% of binding with the DNA of the type strains. On the basis of these results and the significant differences demonstrated in the phenotypic and chemotaxonomic characteristics, it is suggested that the new organisms be classified as a novel species; the name Erythrobacter vulgaris sp. nov. is proposed. The type strain is 022-2-10T (= KMM 3465T = CIP 107841T).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号