首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   89篇
  国内免费   2篇
  986篇
  2022年   10篇
  2021年   15篇
  2020年   9篇
  2019年   15篇
  2018年   19篇
  2017年   14篇
  2016年   36篇
  2015年   42篇
  2014年   46篇
  2013年   52篇
  2012年   61篇
  2011年   64篇
  2010年   31篇
  2009年   37篇
  2008年   40篇
  2007年   68篇
  2006年   56篇
  2005年   66篇
  2004年   40篇
  2003年   51篇
  2002年   58篇
  2001年   12篇
  2000年   12篇
  1999年   6篇
  1998年   19篇
  1997年   10篇
  1996年   11篇
  1995年   3篇
  1994年   6篇
  1993年   9篇
  1992年   2篇
  1990年   4篇
  1988年   2篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1974年   3篇
  1973年   2篇
  1971年   3篇
  1966年   2篇
  1965年   3篇
  1963年   2篇
  1962年   2篇
  1960年   3篇
  1957年   3篇
  1956年   2篇
排序方式: 共有986条查询结果,搜索用时 15 毫秒
131.
The effects of desensitization of capsaicin-sensitive neurons on the blood flow velocity in microvessels of the gastric muscular membrane were investigated before and after indomethacin (35 mg/kg) administration in adrenalectomized rats with or without corticosterone replacement (4 mg/kg sc) and in sham-operated animals. Desensitization of capsaicin-sensitive neurons was performed with neurotoxic dose of capsaicin (20 + 30 + 50 mg/kg sc) two weeks before the experiment. Adrenalectomy was created one week before the experiment. The in vivo microscopy technique for direct visualization of gastric microcirculation and analysis of red blood cell (RBC) velocity was employed. Indomethacin decreased the RBC velocity. Adrenalectomy by itself profoundly decreased the RBC velocity, whereas corticosterone replacement prevented this effect. Desensitization of capsaicin-sensitive neurons did not influence the RBC velocity in sham-adrenalectomized rats; however, it induced further fall of both basal and indomethacin-induced RBC velocity in adrenalectomized rats that was prevented by corticosterone. We conclude that glucocorticoid hormones have a beneficial effect on the blood flow velocity in microvessels of the gastric muscular membrane in rats with desensitization of capsaicin-sensitive neurons.  相似文献   
132.
The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the prokaryotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.  相似文献   
133.
The crystal structure of the 3-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme specialized in the aerobic biodegradation of 3-chloro- and methyl-substituted catechols, has been solved by molecular replacement techniques using the coordinates of 4-chlorocatechol 1,2-dioxygenase from the same organism (PDB code 1S9A) as a starting model and refined at 1.9 A resolution (R(free) 21.9%; R-factor 17.4%). The analysis of the structure and of the kinetic parameters for a series of different substrates, and the comparison with the corresponding data for the 4-chlorocatechol 1,2-dioxygenase isolated from the same bacterial strain, provides evidence of which active site residues are responsible for the observed differences in substrate specificity. Among the amino acid residues expected to interact with substrates, only three are altered Val53(Ala53), Tyr78(Phe78) and Ala221(Cys224) (3-chlorocatechol 1,2-dioxygenase(4-chlorocatechol 1,2-dioxygenase)), clearly identifying the substitutions influencing substrate selectivity in these enzymes. The crystallographic asymmetric unit contains eight subunits (corresponding to four dimers) that show heterogeneity in the conformation of a co-crystallized molecule bound to the catalytic non-heme iron(III) ion resembling a benzohydroxamate moiety, probably a result of the breakdown of recently discovered siderophores synthesized by Gram-positive bacteria. Several different modes of binding benzohydroxamate into the active site induce distinct conformations of the interacting protein ligands Tyr167 and Arg188, illustrating the plasticity of the active site origin of the more promiscuous substrate preferences of the present enzyme.  相似文献   
134.
135.
2,3-Diaminopropionic acid (Dap) and N-terminal Dap peptides have been found to inhibit in vitro protein-modifications by methylglyoxal (MG), one of the highly reactive α-dicarbonyl compounds. MG scavenging potency of the newly synthesized N-terminal Dap peptides is demonstrated by RP-HPLC, SDS–PAGE and non-denaturing PAGE analysis, assays for enzymatic activity and cell viability study and was compared with that of known AGE inhibitors, such as aminoguanidine, pyridoxamine, metformin and carnosine. Two addition products of MG and l-Dap-l-Leu are separated by HPLC and their chemical structures are characterized by 1H and 13C NMR spectroscopy to indicate that both of them are pyrazines derived from 2 molecules of MG and 1 molecule of l-Dap-l-Leu. Mutagenic activities of l-Dap-l-Leu and l-Dap-l-Val and their metabolites according to the Ames assay are found to be negative.  相似文献   
136.
Filamentous fungi synthesize bioactive secondary metabolites with major human health and economic impacts. Little is known about the mechanisms that mediate the export of these metabolites to the cell exterior. Aspergillus parasiticus synthesizes aflatoxin, a secondary metabolite that is one of the most potent naturally occurring carcinogens known. We previously demonstrated that aflatoxin is synthesized and compartmentalized in specialized vesicles called aflatoxisomes and that these subcellular organelles also play a role in the export process. In the current study, we tested the hypothesis that aflatoxisomes fuse with the cytoplasmic membrane to facilitate the release of aflatoxin into the growth environment. Microscopic analysis of A. parasiticus grown under aflatoxin-inducing and non-aflatoxin-inducing conditions generated several lines of experimental evidence that supported the hypothesis. On the basis of the evidence, we propose that export of the mycotoxin aflatoxin in Aspergillus parasiticus occurs by exocytosis, and we present a model to illustrate this export mechanism.Secondary metabolites are chemically diverse natural products synthesized by plants, fungi, bacteria, algae, and animals. Secondary metabolites have an enormous impact on humans. Antibiotics, for example, are essential elements of the multibillion-dollar pharmaceutical industry, whereas mycotoxins cause hundreds of millions of dollars in damage to agriculture annually (11, 15). These chemicals help the producing organism to survive nutrient limitation (16). They also contribute to cellular defense mechanisms and development (11, 12), reduce cellular oxidative stress (10), and help maintain cellular homeostasis by regulating carbon flow in the cell (17).Many fungal secondary metabolites are exported outside the cell; examples include antibiotics and mycotoxins (3, 14). We and others conducted extensive studies on the regulation of fungal secondary metabolism at the molecular (11, 15) and cellular (3, 7) levels. However, little is known about the mechanisms that mediate secondary metabolite export or why export occurs.The filamentous fungus Aspergillus parasiticus produces aflatoxin, a secondary metabolite and the most potent naturally occurring carcinogen known. More than 90% of aflatoxin is exported to the cell exterior (3), making A. parasiticus an excellent model for studying secondary metabolite export. We recently demonstrated that specialized trafficking vesicles called aflatoxisomes play a key role in aflatoxin synthesis and export (3). As synthesis initiates, vesicle-vacuole fusion is downregulated by the global regulator Velvet, resulting in the accumulation of aflatoxisomes which contain at least the last two functional enzymes in the aflatoxin pathway and sequester aflatoxin (3). Treatments that block vesicle-vacuole fusion increase the number of aflatoxisomes, increase the quantity of aflatoxin accumulated in aflatoxisomes, and increase aflatoxin export to the cell exterior (3). On the basis of these previous observations, we hypothesized that aflatoxisomes play a direct role in aflatoxin export.Vesicle-mediated export could theoretically occur by one (or more) of at least three mechanisms (Fig. 1). (i) Vesicles pass across the cytoplasmic membrane intact and “shuttle” their contents into the external environment. This proposed mechanism mediates virulence factor release in Cryptococcus neoformans and Histoplasma capsulatum (1) during pathogenesis. (ii) Vesicles fuse to the cytoplasmic membrane and “pump” vesicle contents to the exterior using transporter proteins similar to those that mediate resistance to antifungal agents (4, 5). (iii) Vesicles fuse with the cytoplasmic membrane, which evaginates, bursts, and “blasts” vesicle contents to the exterior. This process is similar to exocytosis, a proposed secretory mechanism for specific proteins in filamentous fungi (18). We conducted the current study to determine which, if any, of these possible mechanisms most accurately reflects the process of aflatoxin export in A. parasiticus.Open in a separate windowFig. 1.Theoretical models for vesicle-mediated export. Aflatoxigenic vesicles (aflatoxisomes) arise due to downregulation of tethering complex (Tc) activity mediated by VeA (1). Aflatoxin synthesized in aflatoxisomes could theoretically be released to the cell exterior by one or more of three mechanisms: the shuttle (in which aflatoxisomes shuttle cargo across cytoplasmic membrane), pump (in which transmembrane transporter [Tp] proteins mediate the release of secondary metabolites as vesicles adhere to the inner surface of the cytoplasmic membrane), and burst-and-blast (in which vesicles protrude from the cell surface and blast their cargo into the medium) mechanisms. PM, plasma membrane.  相似文献   
137.
We have previously shown that immunization of C57BL/6 mice, prone to spontaneous development of experimental autoimmune encephalomyelitis (EAE), with three antigens (MOG35-55, DNA-histone complex or DNA-methylated BSA complex), alters the differentiation profiles of bone marrow haematopoietic stem cells (HSCs). These are associated with the production of autoantibodies (auto-Abs) against these antigens and the formation of abzymes hydrolysing DNA, MOG, myelin basic protein (MBP) and histones. Immunization of mice with antigens accelerates the development of EAE. This work is the first to analyse the ratio of auto-Abs without and with catalytic activities at different stages of EAE development (onset, acute and remission phases) after immunization of mice with the three specific antigens. Prior to immunization and during spontaneous in-time development of EAE, the concentration of auto-Abs against MBP, MOG, histones and DNA and activities of IgG antibodies in the hydrolysis of substrates increased in parallel; correlation coefficients = +0.69-0.94. After immunization with MOG, DNA-histone complex or DNA-met-BSA complex, both positive (from +0.13 to +0.98) and negative correlations (from −0.09 to −0.69) were found between these values. Our study is the first showing that depending on the antigen, the relative amount of harmful auto-Abs without and abzymes with low or high catalytic activities may be produced only at onset and in acute or remission phases of EAE. The antigen governs the EAE development rate, whereby the ratio of auto-Abs without catalytic activity and with enzymatic activities of harmful abzymes hydrolysing MBP, MOG, histones and DNA varies strongly between different disease phases.  相似文献   
138.
The decline in activity energy expenditure underlies a range of age-associated pathological conditions, neuromuscular and neurological impairments, disability, and mortality. The majority (90%) of the energy needs of the human body are met by mitochondrial oxidative phosphorylation (OXPHOS). OXPHOS is dependent on the coordinated expression and interaction of genes encoded in the nuclear and mitochondrial genomes. We examined the role of mitochondrial genomic variation in free-living activity energy expenditure (AEE) and physical activity levels (PAL) by sequencing the entire (~16.5 kilobases) mtDNA from 138 Health, Aging, and Body Composition Study participants. Among the common mtDNA variants, the hypervariable region 2 m.185G>A variant was significantly associated with AEE (p=0.001) and PAL (p=0.0005) after adjustment for multiple comparisons. Several unique nonsynonymous variants were identified in the extremes of AEE with some occurring at highly conserved sites predicted to affect protein structure and function. Of interest is the p.T194M, CytB substitution in the lower extreme of AEE occurring at a residue in the Qi site of complex III. Among participants with low activity levels, the burden of singleton variants was 30% higher across the entire mtDNA and OXPHOS complex I when compared to those having moderate to high activity levels. A significant pooled variant association across the hypervariable 2 region was observed for AEE and PAL. These results suggest that mtDNA variation is associated with free-living AEE in older persons and may generate new hypotheses by which specific mtDNA complexes, genes, and variants may contribute to the maintenance of activity levels in late life.  相似文献   
139.
Four yellow-pigmented, gram-negative, chemoorganotrophic aerobic bacteria were isolated from starfish Stellaster equestris (strains 022-2-10T, 022-2-9, and 022-2-12) and soft coral (unidentified species) (strain 022-4-7) collected in the South China Sea. 16S rRNA gene sequence-based analyses of the new organisms revealed that Erythrobacter spp. were the closest relatives and shared the highest similarity of 98.7% to E. citreus, 98.5% to E. flavus, 97.9% to E. litoralis and 97.6% to E. longus. The novel organisms were tolerant to 3-6% NaCl, grew between 10 degrees C and 40 degrees C, and were not able to degrade gelatin, casein, and agar, while degraded Tween 80. Two strains (022-2-9 and 022-2-12) could weakly degrade starch. All strains produced a large pool of carotenoids and did not have Bacteriochlorophyll a. Phosphatidylethanolamine (30-36%), phosphatidylglycerol (39-46%), and phosphatidylcholine (21-27%) were the predominant phospholipids. Sphingoglycolipid was not detected. The major fatty acids were 16:0 (6-11%), 16:1omega7 (12-15%), and 18:1omega7 (46-49%). The two-hydroxy fatty acids, 13:0-2OH, 14:0-2OH, 15:0-2OH, 16:0-2OH were also present. The G + C content of the DNAs ranged from 61 to 62 mol%. The level of DNA similarity among four strains was conspecific and ranged from 94% to 98%. Even though new strains and other species of the genus had rather high level of 16S rRNA gene sequence similarities, DNA-DNA hybridization experiments showed only 33-39% of binding with the DNA of the type strains. On the basis of these results and the significant differences demonstrated in the phenotypic and chemotaxonomic characteristics, it is suggested that the new organisms be classified as a novel species; the name Erythrobacter vulgaris sp. nov. is proposed. The type strain is 022-2-10T (= KMM 3465T = CIP 107841T).  相似文献   
140.
EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号