首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   16篇
  2024年   1篇
  2021年   4篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   7篇
  2016年   4篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   14篇
  2011年   13篇
  2010年   8篇
  2009年   11篇
  2008年   11篇
  2007年   7篇
  2006年   8篇
  2005年   10篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
排序方式: 共有141条查询结果,搜索用时 250 毫秒
11.
Atopic dermatitis represents a chronically relapsing skin disease with a steadily increasing prevalence of 10-20% in children. Skin-infiltrating T cells, dendritic cells (DC), and mast cells are thought to play a crucial role in its pathogenesis. We report that the expression of the CC chemokine CCL1 (I-309) is significantly and selectively up-regulated in atopic dermatitis in comparison to psoriasis, cutaneous lupus erythematosus, or normal skin. CCL1 serum levels of atopic dermatitis patients are significantly higher than levels in healthy individuals. DC, mast cells, and dermal endothelial cells are abundant sources of CCL1 during atopic skin inflammation and allergen challenge, and Staphylococcus aureus-derived products induce its production. In vitro, binding and cross-linking of IgE on mast cells resulted in a significant up-regulation of this inflammatory chemokine. Its specific receptor, CCR8, is expressed on a small subset of circulating T cells and is abundantly expressed on interstitial DC, Langerhans cells generated in vitro, and their monocytic precursors. Although DC maintain their CCR8+ status during maturation, brief activation of circulating T cells recruits CCR8 from intracytoplamic stores to the cell surface. Moreover, the inflammatory and atopy-associated chemokine CCL1 synergizes with the homeostatic chemokine CXCL12 (SDF-1alpha) resulting in the recruitment of T cell and Langerhans cell-like DC. Taken together, these findings suggest that the axis CCL1-CCR8 links adaptive and innate immune functions that play a role in the initiation and amplification of atopic skin inflammation.  相似文献   
12.
Atopic dermatitis is a chronic inflammatory skin disease with a steadily increasing prevalence. Exposure to allergens or bacterial superantigens triggers T and dendritic cell (DC) recruitment and induces atopic skin inflammation. In this study, we report that among all known chemokines CCL18/DC-CK1/PARC represents the most highly expressed ligand in atopic dermatitis. Moreover, CCL18 expression is associated with an atopic dermatitis phenotype when compared with other chronic inflammatory skin diseases. DCs either dispersed within the dermis or clustering at sites showing perivascular infiltrates are abundant sources of CCL18. In vitro, microbial products including LPS, peptidoglycan, and mannan, as well as the T cell-derived activation signal CD40L, induced CCL18 in monocytes. In contrast to monocytes, monocyte-derived, interstitial-type, and Langerhans-type DCs showed a constitutive and abundant expression of CCL18. In comparison to Langerhans cells, interstitial-type DCs produced higher constitutive levels of CCL18. In vivo, topical exposure to the relevant allergen or the superantigen staphylococcal enterotoxin B, resulted in a significant induction of CCL18 in atopic dermatitis patients. Furthermore, in nonatopic NiSO4-sensitized individuals, only relevant allergen but not irritant exposure resulted in the induction of CCL18. Taken together, findings of the present study demonstrate that CCL18 is associated with an atopy/allergy skin phenotype, and is expressed at the interface between the environment and the host by cells constantly screening foreign Ags. Its regulation by allergen exposure and microbial products suggests an important role for CCL18 in the initiation and amplification of atopic skin inflammation.  相似文献   
13.
14.
15.
Ribosome synthesis entails the formation of mature rRNAs from long precursor molecules, following a complex pre-rRNA processing pathway. Why the generation of mature rRNA ends is so complicated is unclear. Nor is it understood how pre-rRNA processing is coordinated at distant sites on pre-rRNA molecules. Here we characterized, in budding yeast and human cells, the evolutionarily conserved protein Las1. We found that, in both species, Las1 is required to process ITS2, which separates the 5.8S and 25S/28S rRNAs. In yeast, Las1 is required for pre-rRNA processing at both ends of ITS2. It is required for Rrp6-dependent formation of the 5.8S rRNA 3' end and for Rat1-dependent formation of the 25S rRNA 5' end. We further show that the Rat1-Rai1 5'-3' exoribonuclease (exoRNase) complex functionally connects processing at both ends of the 5.8S rRNA. We suggest that pre-rRNA processing is coordinated at both ends of 5.8S rRNA and both ends of ITS2, which are brought together by pre-rRNA folding, by an RNA processing complex. Consistently, we note the conspicuous presence of ~7- or 8-nucleotide extensions on both ends of 5.8S rRNA precursors and at the 5' end of pre-25S RNAs suggestive of a protected spacer fragment of similar length.  相似文献   
16.
17.
18.
Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号