首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4394篇
  免费   474篇
  国内免费   3篇
  4871篇
  2023年   28篇
  2022年   51篇
  2021年   88篇
  2020年   41篇
  2019年   68篇
  2018年   74篇
  2017年   59篇
  2016年   97篇
  2015年   157篇
  2014年   211篇
  2013年   256篇
  2012年   296篇
  2011年   261篇
  2010年   178篇
  2009年   154篇
  2008年   223篇
  2007年   193篇
  2006年   209篇
  2005年   152篇
  2004年   162篇
  2003年   156篇
  2002年   149篇
  2001年   104篇
  2000年   89篇
  1999年   101篇
  1998年   55篇
  1997年   48篇
  1996年   49篇
  1995年   30篇
  1994年   46篇
  1993年   44篇
  1992年   82篇
  1991年   67篇
  1990年   73篇
  1989年   67篇
  1988年   41篇
  1987年   56篇
  1986年   52篇
  1985年   38篇
  1984年   49篇
  1983年   29篇
  1982年   26篇
  1980年   25篇
  1979年   48篇
  1978年   25篇
  1977年   30篇
  1976年   36篇
  1975年   28篇
  1974年   34篇
  1973年   25篇
排序方式: 共有4871条查询结果,搜索用时 15 毫秒
51.
AIMS: To study whether the exposure to cold (4 degrees C) and carbon dioxide which results in the elongation of Listeria cells, induces a viable but nonculturable (VBNC) state. METHODS AND RESULTS: When cold and CO2 stressed L. monocytogenes were observed under a fluorescence microscope, using the LIVE/DEAD BacLight bacteria viability kit (Molecular Probes, Eugene, OR, USA), the healthy, mildly injured, and the putative VBNC cells accounted for 31.0% of the stressed cell population. By using the selective plate count, 31.4% of the same stressed cell population was found to be healthy and mildly injured (putative VBNC cells not included). If there were VBNC state cells present, we should have observed a significant difference between the above two numbers. In fact, there was no significant difference between the results obtained from those two methods. CONCLUSIONS: There were no VBNC state cells observed in the stressed cell population. We conclude that cold and CO2 do not induce L. monocytogenes to enter a VBNC state. SIGNIFICANCE AND IMPACT OF THE STUDY: Cold and modified atmospheres are widely used in fresh muscle food and fruit preservation. Whether they would induce L. monocytogenes into a VBNC state is of a great concern for microbial food safety.  相似文献   
52.
Human T-lymphotropic Virus-1 (HTLV-1) is a retrovirus that persists lifelong by driving clonal proliferation of infected T-cells. HTLV-1 causes a neuroinflammatory disease and adult T-cell leukemia/lymphoma. Strongyloidiasis, a gastrointestinal infection by the helminth Strongyloides stercoralis, and Infective Dermatitis associated with HTLV-1 (IDH), appear to be risk factors for the development of HTLV-1 related diseases. We used high-throughput sequencing to map and quantify the insertion sites of the provirus in order to monitor the clonality of the HTLV-1-infected T-cell population (i.e. the number of distinct clones and abundance of each clone). A newly developed biodiversity estimator called “DivE” was used to estimate the total number of clones in the blood. We found that the major determinant of proviral load in all subjects without leukemia/lymphoma was the total number of HTLV-1-infected clones. Nevertheless, the significantly higher proviral load in patients with strongyloidiasis or IDH was due to an increase in the mean clone abundance, not to an increase in the number of infected clones. These patients appear to be less capable of restricting clone abundance than those with HTLV-1 alone. In patients co-infected with Strongyloides there was an increased degree of oligoclonal expansion and a higher rate of turnover (i.e. appearance and disappearance) of HTLV-1-infected clones. In Strongyloides co-infected patients and those with IDH, proliferation of the most abundant HTLV-1+ T-cell clones is independent of the genomic environment of the provirus, in sharp contrast to patients with HTLV-1 infection alone. This implies that new selection forces are driving oligoclonal proliferation in Strongyloides co-infection and IDH. We conclude that strongyloidiasis and IDH increase the risk of development of HTLV-1-associated diseases by increasing the rate of infection of new clones and the abundance of existing HTLV-1+ clones.  相似文献   
53.
In vitro inactivation of methionine synthase by nitrous oxide   总被引:3,自引:0,他引:3  
Nitrous oxide (N2O) is commonly used as an anesthetic agent. Prolonged exposure to N2O leads to megaloblastic anemia in humans and to loss of methionine synthase activity in vertebrates. We now report that purified preparations of cobalamin-dependent methionine synthase (5-methyltetrahydrofolate-homocysteine methyltransferase, EC 2.1.1.13) from both Escherichia coli and pig liver are irreversibly inactivated during turnover in buffers saturated with N2O. Inactivation by N2O occurs only in the presence of all components required for turnover: homocysteine, methyltetrahydrofolate, adenosylmethionine, and a reducing system. Reisolation of the inactivated E. coli enzyme after turnover in the presence of N2O resulted in significant losses of bound cobalamin and of protein as compared to controls where the enzyme was subjected to turnover in N2-equilibrated buffers before reisolation. However, N2O inactivation was not associated with major changes in the visible absorbance spectrum of the remaining enzyme-bound cobalamin. We postulate that N2O acts by one-electron oxidation of the cob(I)alamin form of the enzyme which is generated transiently during turnover with the formation of cob(II)alamin, N2, and hydroxyl radical. Generation of hydroxyl radical at the active site of the enzyme could explain the observed irreversible loss of enzyme activity.  相似文献   
54.
55.
Campylobacter jejuni is a highly motile bacterium that responds via chemotaxis to environmental stimuli to migrate towards favourable conditions. Previous in silico analysis of the C. jejuni strain NCTC11168 genome sequence identified 10 open reading frames, tlp1‐10, that encode putative chemosensory receptors. We describe the characterization of the role and specificity of the Tlp1 chemoreceptor (Cj1506c). In vitro and in vivo models were used to determine if Tlp1 had a role in host colonization. The tlp1 isogenic mutant was more adherent in cell culture, however, showed reduced colonization ability in chickens. Specific interactions between the purified sensory domain of Tlp1 and l ‐aspartate were identified using an amino acid array and saturation transfer difference nuclear magnetic resonance spectroscopy. Chemotaxis assays showed differences between migration of wild‐type C. jejuni cells and that of a tlp1 isogenic mutant, specifically towards aspartate. Furthermore, using yeast two‐hybrid and three‐hybrid systems for analysis of protein–protein interactions, the cytoplasmic signalling domain of Tlp1 was found to preferentially interact with CheV, rather than the CheW homologue of the chemotaxis signalling pathway; this interaction was confirmed using immune precipitation assays. This is the first identification of an aspartate receptor in bacteria other than Escherichia coli and Salmonella enterica serovar Typhimurium.  相似文献   
56.
The draft genome of Dietzia cinnamea strain P4 was determined using pyrosequencing. In total, 428 supercontigs were obtained and analyzed. We here describe and interpret the main features of the draft genome. The genome contained a total of 3,555,295 bp, arranged in a single replicon with an average G+C percentage of 70.9%. It revealed the presence of complete pathways for basically all central metabolic routes. Also present were complete sets of genes for the glyoxalate and reductive carboxylate cycles. Autotrophic growth was suggested to occur by the presence of genes for aerobic CO oxidation, formate/formaldehyde oxidation, the reverse tricarboxylic acid cycle and the 3-hydropropionate cycle for CO2 fixation. Secondary metabolism was evidenced by the presence of genes for the biosynthesis of terpene compounds, frenolicin, nanaomycin and avilamycin A antibiotics. Furthermore, a probable role in azinomycin B synthesis, an important product with antitumor activity, was indicated. The complete alk operon for the degradation of n-alkanes was found to be present, as were clusters of genes for biphenyl ring dihydroxylation. This study brings new insights in the genetics and physiology of D. cinnamea P4, which is useful in biotechnology and bioremediation.  相似文献   
57.
Pile-driving and other impulsive sound sources have the potential to injure or kill fishes. One mechanism that produces injuries is the rapid motion of the walls of the swim bladder as it repeatedly contacts nearby tissues. To further understand the involvement of the swim bladder in tissue damage, a specially designed wave tube was used to expose three species to pile-driving sounds. Species included lake sturgeon (Acipenser fulvescens)—with an open (physostomous) swim bladder, Nile tilapia (Oreochromis niloticus)—with a closed (physoclistous) swim bladder and the hogchoker (Trinectes maculatus)—a flatfish without a swim bladder. There were no visible injuries in any of the exposed hogchokers, whereas a variety of injuries were observed in the lake sturgeon and Nile tilapia. At the loudest cumulative and single-strike sound exposure levels (SELcum and SELss respectively), the Nile tilapia had the highest total injuries and the most severe injuries per fish. As exposure levels decreased, the number and severity of injuries were more similar between the two species. These results suggest that the presence and type of swim bladder correlated with injury at higher sound levels, while the extent of injury at lower sound levels was similar for both kinds of swim bladders.  相似文献   
58.
The transmembrane (TM) domain of the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) has long been implicated in both correct folding and function of the MHC class II complex. To function correctly, Ii must form a trimer, and the TM domain is one of the domains thought to stabilize the trimeric state. Specific mutations in the TM domain have been shown previously to disrupt MHC class II functions such as mature complex formation and antigen presentation, possibly due to disruption of Ii TM helix-helix interactions. Although this hypothesis has been reported several times in the literature, thus far no experimental measurements have been made to explore the relationship between TM domain structure and TM mutations that affect Ii function. We have applied biophysical and computational methods to study the folding and assembly of the Ii TM domain in isolation and find that the TM domain strongly self-associates. According to analytical ultracentrifugation analyses, the primary oligomeric state for this TM domain is a strongly associated trimer with a dissociation constant of approximately 120 nM in DPC micelles. We have also examined the effect of functionally important mutations of glutamine and threonine residues in the TM domain on its structure, providing results that now link the disruption of TM helix interactions to previously reported losses of Ii function.  相似文献   
59.
To understand the roles of individual amino acids in the folding and stability of globular proteins, a systematic structural analysis of mutants of the lysozyme of bacteriophage T4 has been undertaken. The isolation, characterization, crystallographic refinement and structural analysis of a temperature-sensitive lysozyme in which threonine 157 is replaced by isoleucine is reported here. This mutation reduces the temperature of the midpoint of the reversible thermal denaturation transition by 11 deg.C at pH 2.0. Electron density maps showing differences between the wild-type and mutant X-ray crystal structures have obvious features corresponding to the substitution of threonine 157 by isoleucine. There is little difference electron density in the remainder of the molecule, indicating that the structural changes are localized to the site of the mutation. High-resolution crystallographic refinement of the mutant lysozyme structure confirms that it is very similar to wild-type lysozyme. The largest conformational differences are in the gamma-carbon of residue 157 and in the side-chain of Asp159, which shift 1.0 A and 1.1 A, respectively. In the wild-type enzyme, the gamma-hydroxyl group of Thr157 participates in a network of hydrogen bonds. Substitution of Thr157 with an isoleucine disrupts this set of hydrogen bonds. A water molecule bound in the vicinity of Thr155 partially restores the hydrogen bond network in the mutant structure, but the buried main-chain amide of Asp159 is not near a hydrogen bond acceptor. This unsatisfied hydrogen-bonding potential is the most obvious reason for the reduction in stability of the temperature-sensitive mutant protein.  相似文献   
60.
Isolation of two L-asparaginases from guinea pig liver   总被引:1,自引:0,他引:1  
W S Matthews  H D Brown 《Enzyme》1974,17(5):276-286
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号