首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   4篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   6篇
  2013年   6篇
  2012年   14篇
  2011年   12篇
  2010年   2篇
  2009年   9篇
  2008年   11篇
  2007年   11篇
  2006年   9篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1992年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
41.
The interactions of tributyllead with lysosomes from rat liver have been studied. It results that the organometal compound induces a fast alkalinization in energized lysosomes. The interpretation is that the compound is a potent proton carrier. This function could explain the toxicity, in particular at neurological level of the compound.  相似文献   
42.
Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs-/- mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs-/- background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.  相似文献   
43.
The interactions of mercury (Hg2+) with biological membranes have been investigated. The experimental results indicate that Hg2+ induces a rapid alkalinization in energized Lysosomes from rat liver. The interpretation of the process is that the mercury enters the Lysosomes as a Hg(OH)2 electroneutral compound, thus inducing alkalinization in the matrix.  相似文献   
44.
Abscisic acid (ABA) is a plant stress hormone recently identified as an endogenous pro-inflammatory cytokine in human granulocytes. Because paracrine signaling between pancreatic beta cells and inflammatory cells is increasingly recognized as a pathogenetic mechanism in the metabolic syndrome and type II diabetes, we investigated the effect of ABA on insulin secretion. Nanomolar ABA increases glucose-stimulated insulin secretion from RIN-m and INS-1 cells and from murine and human pancreatic islets. The signaling cascade triggered by ABA in insulin-releasing cells sequentially involves a pertussis toxin-sensitive G protein, cAMP overproduction, protein kinase A-mediated activation of the ADP-ribosyl cyclase CD38, and cyclic ADP-ribose overproduction. ABA is rapidly produced and released from human islets, RIN-m, and INS-1 cells stimulated with high glucose concentrations. In conclusion, ABA is an endogenous stimulator of insulin secretion in human and murine pancreatic beta cells. Autocrine release of ABA by glucose-stimulated pancreatic beta cells, and the paracrine production of the hormone by activated granulocytes and monocytes suggest that ABA may be involved in the physiology of insulin release as well as in its dysregulation under conditions of inflammation.  相似文献   
45.
46.
Vegetation History and Archaeobotany - The present study concerns the Phoenician-Punic site of Motya, a small island set in Western Sicily (Italy), in the Marsala Lagoon (Stagnone di Marsala),...  相似文献   
47.
48.
The polyamine spermine is transported into the mitochondrial matrix by an electrophoretic mechanism having as driving force the negative electrical membrane potential (ΔΨ). The presence of phosphate increases spermine uptake by reducing ΔpH and enhancing ΔΨ. The transport system is a specific uniporter constituted by a protein channel exhibiting two asymmetric energy barriers with the spermine binding site located in the energy well between the two barriers. Although spermine transport is electrophoretic in origin, its accumulation does not follow the Nernst equation for the presence of an efflux pathway. Spermine efflux may be induced by different agents, such as FCCP, antimycin A and mersalyl, able to completely or partially reduce the ΔΨ value and, consequently, suppress or weaken the force necessary to maintain spermine in the matrix. However this efflux may also take place in normal conditions when the electrophoretic accumulation of the polycationic polyamine induces a sufficient drop in ΔΨ able to trigger the efflux pathway. The release of the polyamine is most probably electroneutral in origin and can take place in exchange with protons or in symport with phosphate anion. The activity of both the uptake and efflux pathways induces a continuous cycling of spermine across the mitochondrial membrane, the rate of which may be prominent in imposing the concentrations of spermine in the inner and outer compartment. Thus, this event has a significant role on mitochondrial permeability transition modulation and consequently on the triggering of intrinsic apoptosis.  相似文献   
49.
The pathogenetic bases of HAART-associated lipodystrophy are still poorly known, even if it is clear that adipose tissue and its metabolism are sensitive to antiretroviral therapy alone and/or in combination with HIV infection. The NEDD8 system is essential for the regulation of protein degradation pathways involved in cell cycle progression, morphogenesis and tumorigenesis. We investigated the possible involvement of NEED8 in adipogenesis and, consequently, in HIV-related lipodystrophy.  相似文献   
50.
Abscisic acid (ABA) is a plant hormone regulating fundamental physiological functions in plants, such as response to abiotic stress. Recently, ABA was shown to be produced and released by human granulocytes, by insulin-producing rat insulinoma cells, and by human and murine pancreatic β cells. ABA autocrinally stimulates the functional activities specific for each cell type through a receptor-operated signal transduction pathway, sequentially involving a pertussis toxin-sensitive receptor/G-protein complex, cAMP, CD38-produced cADP-ribose and intracellular calcium. Here we show that the lanthionine synthetase C-like protein LANCL2 is required for ABA binding on the membrane of human granulocytes and that LANCL2 is necessary for transduction of the ABA signal into the cell-specific functional responses in granulocytes and in rat insulinoma cells. Co-expression of LANCL2 and CD38 in the human HeLa cell line reproduces the ABA-signaling pathway. Results obtained with granulocytes and CD38+/LANCL2+ HeLa transfected with a chimeric G-protein (Gαq/i) suggest that the pertussis toxin-sensitive G-protein coupled to LANCL2 is a Gi. Identification of LANCL2 as a critical component of the ABA-sensing protein complex will enable the screening of synthetic ABA antagonists as prospective new anti-inflammatory and anti-diabetic agents.The plant hormone abscisic acid (ABA)4 plays a fundamental role in the regulation of plant response to environmental conditions, as well as in plant tissue development (1). Although the ABA biosynthetic pathway in plants and in fungi has been largely detailed, identification of the components of the ABA signaling pathway, particularly of the ABA receptor(s), has remained elusive. Two ABA-binding proteins have been identified in different plant tissues: the chloroplast Mg-chelatase subunit H (2) and, most recently, the G-protein-coupled receptor GCR2, which appears to mediate ABA-controlled stomatal closure and seed dormancy in Arabidopsis (3), although the role of GCR2 in the control of seed germination is still controversial (46) and its coupling to a G-protein has been refuted on the basis of sequence analyses (78). The Mg-chelatase subunit H was proposed as an intracellular ABA receptor, whereas GCR2 is a plasmamembrane protein, which interacts with the only Gα subunit (GPA 1) present in Arabidopsis (3). Although the Mg-chelatase subunit H does not show any significant homology with mammalian proteins, GCR2 shares a high amino acid identity with the mammalian peptide-modifying lanthionine synthetase C-like protein (LANCL) family (7). The animal LANCL protein family in turn shows structural similarities with the prokaryotic lanthionine synthetase component C proteins (9) involved in the synthesis of lanthionine-containing antimicrobial peptides known as lantibiotics (10).The fact that lantibiotics are not produced in animals suggests that LANCL proteins have a different function than prokaryotic lanthionine synthetase component C proteins. The human genome contains three LANCL genes, LANCL1, LANCL2, and LANCL3, located on chromosomes 2 and 7 and the X chromosome, respectively (11, 12). LANCL1 was the first member of the family to be isolated from human erythrocyte membranes (13). The LANCL2 mRNA was identified in a screening procedure for genes whose down-regulation resulted in anticancer drug resistance; thus, LANCL2 was also called testis-specific Adriamicin sensitivity protein (14). The structural assignment for the human LANCL proteins remains controversial. Based on the presence of seven putative transmembrane domains, LANCL1 and -2 were originally described as new G-protein-coupled receptors (GPCR69A and GPR69B, respectively); however, subsequent studies performed on human epithelial cells overexpressing LANCL1 or LANCL2 fused to the green fluorescent protein (LANCL1-GFP and LANCL2-GFP) showed that LANCL1-GFP is mainly found in the cytosol and in the nucleus, whereas LANCL2-GFP is associated with the plasmamembrane through N-terminal myristoylation (15). Similarly, the debate over the structurally related GCR2 is still open (36, 8).ABA has recently been demonstrated to be an endogenous pro-inflammatory hormone in human granulocytes, stimulating several cell functions (phagocytosis, reactive oxygen species and nitric oxide production, chemotaxis, and chemokinesis) through a pathway involving a pertussis toxin (PTX)-sensitive G-protein/receptor complex located on the plasmamembrane, cAMP overproduction, protein kinase A-dependent phosphorylation of the human ADP-ribosyl cyclase CD38, and consequent cADP-ribose (cADPR) generation, leading to an increase of the intracellular Ca2+ concentration (16; see also Ref. 17). This signaling pathway is similar to that triggered by ABA in plants (18). Fluorescence microscopy confirmed binding of biotinylated ABA to the granulocyte plasmamembrane. Scatchard plot analysis of [3H]ABA binding demonstrated presence of both high and low affinity ABA binding sites (Kd 11 nm and 500 μm, respectively) on human granulocytes (16). Most recently, nanomolar ABA has been shown to stimulate insulin secretion by human and murine pancreatic β cells and by rat insulinoma cell lines through a signaling pathway similar to the one described in human granulocytes (19). The autocrine release of ABA from glucose-stimulated human and rodent insulin-releasing cells, together with the fact that ABA is also produced by activated inflammatory cells, granulocytes (16), and monocytes (20), suggests that this hormone may contribute to the network of cytokine signals exchanged between inflammatory cells and pancreatic β cells, which is increasingly recognized as a fundamental mechanism in the development of the metabolic syndrome and type II diabetes (2124).Based on (i) the sequence homology between the putative Arabidopsis ABA-receptor protein GCR2 and the human LANCL protein family, and (ii) the reported association of LANCL2 with the plasmamembrane, we investigated whether LANCL2 might be involved in ABA sensing in mammalian ABA-responsive cells. The results obtained indicate that LANCL2 is indeed, (i) required for ABA binding to the plasmamembrane of human granulocytes and (ii) necessary for the activation of the ABA signaling pathway, leading to the stimulation of the functional responses induced by ABA in human granulocytes and in rat insulinoma cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号