首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   914篇
  免费   69篇
  983篇
  2023年   4篇
  2022年   8篇
  2021年   18篇
  2020年   13篇
  2019年   9篇
  2018年   21篇
  2017年   16篇
  2016年   31篇
  2015年   46篇
  2014年   51篇
  2013年   72篇
  2012年   52篇
  2011年   89篇
  2010年   54篇
  2009年   43篇
  2008年   53篇
  2007年   44篇
  2006年   45篇
  2005年   45篇
  2004年   43篇
  2003年   38篇
  2002年   40篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   8篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1982年   5篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
  1976年   8篇
  1975年   2篇
  1974年   7篇
  1973年   3篇
  1971年   1篇
  1969年   3篇
排序方式: 共有983条查询结果,搜索用时 0 毫秒
901.
The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.  相似文献   
902.
In populations exposed to Leishmania braziliensis, certain subjects develop skin ulcers, whereas others are naturally protected against cutaneous leishmaniasis. We have evaluated which cytokines are most crucial in the development of skin lesions. We found that active lesions occur in subjects with polarized Th2 or mixed Th1/Th2 responses, both associated with elevated IL-10 production. IL-10 was strongly associated (p = 0.004, odd ratio (OR) = 6.8, confidence interval = 1.9-25) with lesions, excluding IFN-gamma, IL-12, TNF, IL-13, and IL-4 from the regression model. IL-10 was produced by blood monocytes and CD4(+)CD25(+) T lymphocytes (mostly Foxp3(+)). However, we did not observe any difference between the number of these cells present in the blood of subjects with active lesions and those present in resistant subjects. Genetic analysis of the IL10-819C/T polymorphism, located in the IL10 promoter, showed that the C allele increased the risk of lesions (OR = 2.5 (1.12-5.7), p = 0.003). Functional analysis of these variants showed allele-specific binding of nuclear factors. The IL10-819C/C genotype was associated with higher levels of IL-10 than C/T and T/T genotypes. These observations demonstrate an important role for IL-10 in skin lesions in humans infected with L. braziliensis, and identify circulating monocytes and Tregs as principal sources of IL-10 in these patients.  相似文献   
903.
Here we report that PLC-beta(1) catalytic activity plays a role in the increase of cyclin D3 levels and induces the differentiation of C2C12 skeletal muscle cells. PLC-beta(1) mutational analysis revealed the importance of His(331) and His(378) for the catalysis. The expression of PLC-beta(1) and cyclin D3 proteins is highly induced during the process of skeletal myoblast differentiation. We have previously shown that PLC-beta(1) activates cyclin D3 promoter during the differentiation of myoblasts to myotubes, indicating that PLC-beta(1) is a crucial regulator of the mouse cyclin D3 gene. We show that after insulin treatment cyclin D3 mRNA levels are lower in cells overexpressing the PLC-beta(1) catalytically inactive form in comparison to wild type cells. We describe a novel signalling pathway elicited by PLC-beta(1) that modulates AP-1 activity. Gel mobility shift assay and supershift performed with specific antibodies indicate that the c-jun binding site is located in a cyclin D3 promoter region specifically regulated by PLC-beta(1) and that c-Jun binding activity is significantly increased by insulin and PLC-beta(1) overexpression. Mutation of AP-1 site decreased the basal cyclin D3 promoter activity and eliminated its induction by insulin and PLC-beta(1). These results hint at the fact that PLC-beta(1) catalytic activity signals a c-jun/AP-1 target gene, i.e. cyclin D3, during myogenic differentiation.  相似文献   
904.
Osteosarcoma (OS) is the most common pediatric malignant neoplasia of the skeletal system. It is characterized by a high degree of malignancy and a severe tendency to metastasize. In the past decade, many studies have provided evidence that the phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most frequently altered pathways in human cancer, and has a critical role in driving tumor initiation and progression. Here, we have analyzed the therapeutic potential of the pan-PI3K inhibitor NVP-BKM120, which has recently entered clinical Phase II for treatment of PI3K-dependent cancers on three OS cell lines. We observed a concentration- and time-dependent decrease of Ser473 p-Akt as well as reduced levels of Thr37/46 p-4E-BP1, an indicator of the mammalian target of rapamycin complex 1 activity. All OS cell lines used in this study responded to BKM120 treatment with an arrest of cell proliferation, an increase in cell mortality, and an increase in caspase-3 activity. MG-63 cells were the most responsive cell line, demonstrating a significant increase in sub-G1 cells, and a rapid induction of cell death. Furthermore, we demonstrate that BKM120 is more effective when used in combination with other standard chemotherapeutic drugs. Combining BKM120 with vincristine demonstrated a more synergistic effect than BKM120 with doxorubicin in all the lines. Hence, we suggest that BKM120 may be a novel therapy for the treatment of OS presenting with anomalous upregulation of the PI3K signaling pathway.  相似文献   
905.
Biomechanics and Modeling in Mechanobiology - Biomechanical failure of the artery wall can lead to rupture, a catastrophic event with a high rate of mortality. Thus, there is a pressing need to...  相似文献   
906.
One aim of this session given at the Torino CD38 Meeting in June, 2006 was to review the role of CD38 in B-cell Chronic Lymphocytic Leukemia (B-CLL), and its potential as a therapeutic target. CD38(high) B-CLL cases show activated phenotypic features as compared with CD38(low) cases. Moreover, a greater percentage of Ki-67 and telomerase activity is documented among CD38(high) cases. Also, CD38 is not merely a negative prognostic marker in B-CLL, but also a key element in the pathogenetic network underlying the disease. A large series of B-CLL cases investigating the CD38 expression on bone marrow B-cells identified CD38 value <10% as the cut-off predicting a longer time to treatment. However, neither CD38 nor ZAP-70 by themselves or in combination were able to anticipate IgVH mutational status. Transferring these findings into clinical ground, 3 groups of B-CLL cases were identified with significantly different clinical courses: i.e., low-risk (no negative prognostic factor), intermediate-risk (1 negative prognostic factor) and high-risk (2-3 negative prognostic factors) patients. Altogether these results suggest that: i) CD38-expressing cells present not only an activation status, but also a different stage differentiation with a more repeated turnover; ii) CD38 contributes to controlling a signaling pathway that confers to B-CLL cells an increased proliferative potential, enhancing aggressiveness of this variant; iii) different CD38 cut off values should be considered for peripheral blood and bone marrow; iv) CD38 seems to independently contribute to prognostic stratification of B-CLL.  相似文献   
907.
A phosphoinositide signalling cycle is present in the nucleus, independent of that which occurs at the plasma membrane. The key enzyme involved in this cycle is phospholipase (PLC) β1. This nuclear cycle has been shown to be involved in both cell proliferation and differentiation. Here, we report that nuclear PLCβ1 activity is upregulated during differentiation of 3T3-L1 adipocytes. During differentiation there are two phases of PLCβ1 activity; the first occurs within 5 min of treatment with differentiation media, does not require new PLCβ1 to enter the nucleus and is regulated by pERK and PKC α while the second phase occurs from day 2 of differentiation, requires new PLCβ1 protein to enter the nucleus and is independent of regulation by pERK and PKC α. Over-expression with the PLC mutants, Δmk (which lacks the ERK phosphorylation site) and M2B (which lacks the nuclear localisation sequence), revealed that both phases of PLCβ1 activity are required for terminal differentiation to occur. Inhibition of PLCβ1 activity prevents the upregulation of cyclinD3 and cdk4 protein, suggesting that PLCβ1 plays a role in the control of the cell cycle during differentiation. These results indicate nuclear PLCβ1 as a key regulator of adipocyte differentiation.  相似文献   
908.
Conti L  Bradley D 《The Plant cell》2007,19(3):767-778
Shoot meristems harbor stem cells that provide key growing points in plants, maintaining themselves and generating all above-ground tissues. Cell-to-cell signaling networks maintain this population, but how are meristem and organ identities controlled? TERMINAL FLOWER1 (TFL1) controls shoot meristem identity throughout the plant life cycle, affecting the number and identity of all above-ground organs generated; tfl1 mutant shoot meristems make fewer leaves, shoots, and flowers and change identity to flowers. We find that TFL1 mRNA is broadly distributed in young axillary shoot meristems but later becomes limited to central regions, yet affects cell fates at a distance. How is this achieved? We reveal that the TFL1 protein is a mobile signal that becomes evenly distributed across the meristem. TFL1 does not enter cells arising from the flanks of the meristem, thus allowing primordia to establish their identity. Surprisingly, TFL1 movement does not appear to occur in mature shoots of leafy (lfy) mutants, which eventually stop proliferating and convert to carpel/floral-like structures. We propose that signals from LFY in floral meristems may feed back to promote TFL1 protein movement in the shoot meristem. This novel feedback signaling mechanism would ensure that shoot meristem identity is maintained and the appropriate inflorescence architecture develops.  相似文献   
909.
A full control of the interaction between confined plasmons and point sources of radiation is a central issue in molecular plasmonics. In this paper, a theoretical contribution towards a physical understanding on the localized surface plasmons excited into metallic nanocones by a point dipole is given. A numerical approach based on the discrete dipole approximation is applied to determine the modifications of the dipole decay rates for varying geometrical parameters of the dipole-metal nanoparticle system. Results declare the centrality of the cone aperture to control the plasmon resonances and to handle the effects it induces on the lifetime of a point emitter. A full spectral tuning of the resonances in the decay rates can be achieved by operating on a unique spatial degree of freedom: by tailoring the aperture alone, total decay rates 105 times higher than the free-space value can be obtained at short distances from the metal in a large region of the spectral range. Quite unexpectedly, size dependence of the antenna is found to have a marginal role if only a lifetime manipulation is desired. It becomes, instead, a crucial aspect of the problem when large quantum yields are required. Results presented in this work shed light on spontaneous emission modification due to interaction with plasmonic nanocones of different shapes and are relevant for a number of applications in the fields of nanoplasmonics and fluorescence microscopy.  相似文献   
910.
We describe here a simple method for labeling the genome of human cytomegalovirus, a large double-stranded DNA virus, with bromodeoxyuridine (BrdU). The labeled DNA was incorporated into viral particles, which were then collected in cell supernatant. To demonstrate the versatility and effectiveness of this method, labeled virions were used to study the immediate-early events of virus-host cell interaction via indirect immunofluorescence microscopy. It is our hope that this new methodology will prove useful in the study of binding, entry and viral genome deposition in diverse virus systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号