首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   18篇
  248篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   8篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   16篇
  2014年   11篇
  2013年   14篇
  2012年   30篇
  2011年   22篇
  2010年   7篇
  2009年   5篇
  2008年   13篇
  2007年   14篇
  2006年   5篇
  2005年   11篇
  2004年   13篇
  2003年   13篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1954年   1篇
  1953年   2篇
  1941年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
31.
The human pathogen Streptococcus pneumoniae is one of the main causative agents of respiratory tract infections. At present, clinical isolates of S. pneumoniae often exhibit decreased susceptibility toward beta-lactams, a phenomenon linked to multiple mutations within the penicillin-binding proteins (PBPs). PBP2x, one of the six PBPs of S. pneumoniae, is the first target to be modified under antibiotic pressure. By comparing 89 S. pneumoniae PBP2x sequences from clinical and public data bases, we have identified one major group of sequences from drug-sensitive strains as well as two distinct groups from drug-resistant strains. The first group includes proteins that display high similarity to PBP2x from the well characterized resistant strain Sp328. The second group includes sequences in which a signature mutation, Q552E, is found adjacent to the third catalytic motif. In this work, a PBP2x from a representative strain from the latter group (S. pneumoniae 5259) was biochemically and structurally characterized. Phenotypical analyses of transformed pneumococci show that the Q552E substitution is responsible for most of the reduction of strain susceptibility toward beta-lactams. The crystal structure of 5259-PBP2x reveals a change in polarity and charge distribution around the active site cavity, as well as rearrangement of strand beta3, emulating structural changes observed for other PBPs that confer drug resistance to Gram-positive pathogens. Interestingly, the active site of 5259-PBP2x is in closed conformation, whereas that of Sp328-PBP2x is open. Consequently, S. pneumoniae has evolved to employ the same protein in two distinct mechanisms of antibiotic resistance.  相似文献   
32.
We have previously shown that ISG20, an interferon (IFN)-induced gene, encodes a 3' to 5' exoribonuclease member of the DEDD superfamily of exonucleases. ISG20 specifically degrades single-stranded RNA. In this report, using immunofluorescence analysis, we demonstrate that in addition to a diffuse cytoplasmic and nucleoplasmic localization, the endogenous ISG20 protein was present in the nucleus both in the nucleolus and in the Cajal bodies (CBs). In addition, we show that the ectopic expression of the CBs signature protein, coilin, fused to the red fluorescent protein (coilin-dsRed) increased the number of nuclear dots containing both ISG20 and coilin-dsRed. Using electron microcopy analysis, ISG20 appeared principally concentrated in the dense fibrillar component of the nucleolus, the major site for rRNA processing. We also present evidences that ISG20 was associated with survival of motor neuron (SMN)-containing macromolecular nuclear complexes required for the biogenesis of various small nuclear ribonucleoproteins. Finally, we demonstrate that ISG20 was associated with U1 and U2 snRNAs, and U3 snoRNA. The accumulation of ISG20 in the CBs after IFN treatment strongly suggests its involvement in a new route for IFN-mediated inhibition of protein synthesis by modulating snRNA and rRNA maturation.  相似文献   
33.
Responses of bacterial communities to disturbance and restoration processes were investigated on alpine grassland soil. Bulk soil, rhizosphere soil and two soil separates, i.e. sand-size (2000-200 microm) and silt-size (50-2 microm) were sampled from undisturbed grassland soil to soil under restoration for 1 month, 1 year, 4 years and 13 years after disturbance. Automated ribosomal intergenic spacer analysis (ARISA) and restriction fragment length polymorphism (RFLP) of nifH gene pools were used to assay genetic structure of the bacterial communities and N2-fixing guild. According to the distribution of ARISA band length in bacterial phyla, the dominance of ARISA bands below 400 bp showed that Gram-positive bacteria would be predominant in the studied grassland soil when not disturbed. Disturbance affected the genetic structure of bacterial community and of N2-fixing guild in relation to their location within the selected habitats. Shifts in IGS and nifH profiles of bulk soil metagenome were larger than those observed from sand-size- and silt-size-fractions, accounting for 40-50% of the variance in the profiles. Restoration of the genetic structure of telluric bacteria community and N2-fixing populations was found to be influenced by the spatial heterogeneity of the soil and niche diversification. Particular bacterial genetic structure within distinct habitats were evidenced and must be defined as subdivisions of the meta-community of bulk soil. Scale of soil microbial diversity/stability relationships is discussed with special attention to disconnected bacterial habitat compared with whole soil with multiple niches.  相似文献   
34.
Fungal communities are key components of soil, but the study of their ecological significance is limited by a lack of appropriated methods. For instance, the assessment of fungi occurrence and spatio-temporal variation in soil requires the analysis of a large number of samples. The molecular signature methods provide a useful tool to monitor these microbial communities and can be easily adapted to capillary electrophoresis (CE) allowing high-throughput studies. Here we assess the suitability of CE-FLA (Fragment Length Polymorphism, denaturing conditions) and CE-SSCP (Single-Stranded Conformation Polymorphism, native conditions) applied to environmental studies since they require a short molecular marker and no post-PCR treatments. We amplified the ITS1 region from 22 fungal strains isolated from an alpine ecosystem and from total genomic DNA of alpine and infiltration basin soils. The CE-FLA and CE-SSCP separated 17 and 15 peaks respectively from a mixture of 19 strains. For the alpine soil-metagenomic DNA, the FLA displayed more peaks than the SSCP and the converse result was found for infiltration basin sediments. We concluded that CE-FLA and CE-SSCP of ITS1 region provided complementary information. In order to improve CE-SSCP sensitivity, we tested its resolution according to migration temperature and found 32 degrees C to be optimal. Because of their simplicity, quickness and reproducibility, we found that these two methods were promising for high-throughput studies of soil fungal communities.  相似文献   
35.
AMMONIUM TRANSPORTER (AMT) proteins are conserved in all domains of life and mediate the transport of ammonium or ammonia across cell membranes. AMTs form trimers and use intermolecular interaction between subunits to regulate activity. So far, binding forces that stabilize AMT protein complexes are not well characterized. High temperature or reducing agents released mono- and dimeric forms from trimeric complexes formed by AMT1;1 from Arabidopsis and tomato. However, in the paralogue LeAMT1;3, trimeric complexes were not detected. LeAMT1;3 differs from the other AMTs by an unusually short N-terminus, suggesting a role for the N-terminus in oligomer stability. Truncation of the N-terminus in LeAMT1;1 destabilized the trimer and led to loss of functionality when expressed in yeast. Swapping of the N-terminus between LeAMT1;1 and LeAMT1;3 showed that sequences in the N-terminus of LeAMT1;1 are necessary and sufficient for stabilization of the interaction among the subunits. Two N-terminal cysteine residues are highly conserved among AMT1 transporters in plants but are lacking in LeAMT1;3. C3S or C27S variants of LeAMT1;1 showed reduced complex stability, which coincided with lower transport capacity for the substrate analogue methylammonium. Both cysteine-substituted LeAMT1;1 variants showed weaker interactions with the wildtype as determined by a quantitative analysis of the complex stability using the mating-based split-ubiquitin assay. These data indicate that the binding affinity of AMT1 subunits is stabilized by cysteines in the N-terminus and suggest a role for disulphide bridge formation via apoplastic N-terminal cysteine residues.  相似文献   
36.
Non‐self‐recognition of microorganisms partly relies on the perception of microbe‐associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA‐regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long‐lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP‐non‐producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants.  相似文献   
37.

Background and Aims

In Arabidopsis thaliana, the degree of methylesterification (DM) of homogalacturonans (HGs), the main pectic constituent of the cell wall, can be modified by pectin methylesterases (PMEs). In all organisms, two types of protein structure have been reported for PMEs: group 1 and group 2. In group 2 PMEs, the active part (PME domain, Pfam01095) is preceded by an N-terminal extension (PRO part), which shows similarities to PME inhibitors (PMEI domain, Pfam04043). This PRO part mediates retention of unprocessed group 2 PMEs in the Golgi apparatus, thus regulating PME activity through a post-translational mechanism. This study investigated the roles of a subtilisin-type serine protease (SBT) in the processing of a PME isoform.

Methods

Using a combination of functional genomics, biochemistry and proteomic approaches, the role of a specific SBT in the processing of a group 2 PME was assessed together with its consequences for plant development.

Key Results

A group 2 PME, AtPME17 (At2g45220), was identified, which was highly co-expressed, both spatially and temporally, with AtSBT3.5 (At1g32940), a subtilisin-type serine protease (subtilase, SBT), during root development. PME activity was modified in roots of knockout mutants for both proteins with consequent effects on root growth. This suggested a role for SBT3.5 in the processing of PME17 in planta. Using transient expression in Nicotiana benthamiana, it was indeed shown that SBT3.5 can process PME17 at a specific single processing motif, releasing a mature isoform in the apoplasm.

Conclusions

By revealing the potential role of SBT3.5 in the processing of PME17, this study brings new evidence of the complexity of the regulation of PMEs in plants, and highlights the need for identifying specific PME–SBT pairs.  相似文献   
38.
Uropathogenic Escherichia coli (UPEC) is the leading cause of community-acquired urinary tract infections (UTIs), with over 100 million UTIs occurring annually throughout the world. Increasing antimicrobial resistance among UPEC limits ambulatory care options, delays effective treatment, and may increase overall morbidity and mortality from complications such as urosepsis. The polysaccharide capsules of UPEC are an attractive target a therapeutic, based on their importance in defense against the host immune responses; however, the large number of antigenic types has limited their incorporation into vaccine development. The objective of this study was to identify small-molecule inhibitors of UPEC capsule biogenesis. A large-scale screening effort entailing 338,740 compounds was conducted in a cell-based, phenotypic screen for inhibition of capsule biogenesis in UPEC. The primary and concentration-response assays yielded 29 putative inhibitors of capsule biogenesis, of which 6 were selected for further studies. Secondary confirmatory assays identified two highly active agents, named DU003 and DU011, with 50% inhibitory concentrations of 1.0 µM and 0.69 µM, respectively. Confirmatory assays for capsular antigen and biochemical measurement of capsular sugars verified the inhibitory action of both compounds and demonstrated minimal toxicity and off-target effects. Serum sensitivity assays demonstrated that both compounds produced significant bacterial death upon exposure to active human serum. DU011 administration in mice provided near complete protection against a lethal systemic infection with the prototypic UPEC K1 isolate UTI89. This work has provided a conceptually new class of molecules to combat UPEC infection, and future studies will establish the molecular basis for their action along with efficacy in UTI and other UPEC infections.  相似文献   
39.
Background: Observational studies have associated metformin use with lower colorectal cancer (CRC) incidence but few studies have examined metformin's influence on CRC survival. We examined the relationships among metformin use, diabetes, and survival in postmenopausal women with CRC in the Women's Health Initiative (WHI) clinical trials and observational study. Methods: 2066 postmenopausal women with CRC were followed for a median of 4.1 years, with 589 deaths after CRC diagnosis from all causes and 414 deaths directly attributed to CRC. CRC-specific survival was compared among women with diabetes with metformin use (n = 84); women with diabetes with no metformin use (n = 128); and women without diabetes (n = 1854). Cox proportional hazard models were used to estimate associations among metformin use, diabetes and survival after CRC. Strategies to adjust for potential confounders included: multivariate adjustment with known predictors of colorectal cancer survival and construction of a propensity score for the likelihood of receiving metformin, with model stratification by propensity score quintile. Results: After adjusting for age and stage, CRC specific survival in women with diabetes with metformin use was not significantly different compared to that in women with diabetes with no metformin use (HR 0.75; 95% CI 0.40–1.38, p = 0.67) and to women without diabetes (HR 1.00; 95% CI 0.61–1.66, p = 0.99). Following propensity score adjustment, the HR for CRC-specific survival in women with diabetes with metformin use compared to non-users was 0.78 (95% CI 0.38–1.55, p = 0.47) and for overall survival was 0.86 (95% CI 0.49–1.52; p = 0.60). Conclusions: In postmenopausal women with CRC and DM, no statistically significant difference was seen in CRC specific survival in those who used metformin compared to non-users. Analyses in larger populations of colorectal cancer patients are warranted.  相似文献   
40.
Throughout evolution, one of the most ancient forms of aggression between cells or organisms has been the production of proteins or peptides affecting the permeability of the target cell membrane. This class of virulence factors includes the largest family of bacterial toxins, the pore-forming toxins (PFTs). PFTs are bistable structures that can exist in a soluble and a transmembrane state. It is unclear what drives biosynthetic folding towards the soluble state, a requirement that is essential to protect the PFT-producing cell. Here we have investigated the folding of aerolysin, produced by the human pathogen Aeromonas hydrophila, and more specifically the role of the C-terminal propeptide (CTP). By combining the predictive power of computational techniques with experimental validation using both structural and functional approaches, we show that the CTP prevents aggregation during biosynthetic folding. We identified specific residues that mediate binding of the CTP to the toxin. We show that the CTP is crucial for the control of the aerolysin activity, since it protects individual subunits from aggregation within the bacterium and later controls assembly of the quaternary pore-forming complex at the surface of the target host cell. The CTP is the first example of a C-terminal chain-linked chaperone with dual function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号