首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   12篇
  168篇
  2022年   1篇
  2021年   4篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   12篇
  2011年   11篇
  2010年   12篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1984年   4篇
  1983年   2篇
  1981年   5篇
  1980年   9篇
  1979年   3篇
  1977年   2篇
  1975年   5篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有168条查询结果,搜索用时 0 毫秒
51.
52.
Extracts of sporulating cells were found to be defective in vitro translation of phage SP01 ribonucleic acid (RNA) and vegetative Bacillus subtilis RNA. The activity of washed ribosomes from sporulating cells was very similar to that of washed ribosomes from vegetative cells in translating polyuridylic acid, SP01 RNA, and vegetative RNA. The S-150 fraction from either vegetative or sporulating cells grown in Difco sporulation medium contained an apparent inhibitor of protein synthesis. The crude initiation factor fraction from ribosomes of sporulating cells was defective in promoting the initiation factor-dependent translation of SP01 RNA. The crude initiation factor preparations from sporulating cells were as active as the corresponding preparations from vegetative cells in promoting the initiation factor-dependent translation of either phage Qbeta or phage T4 RNA by washed Escherichia coli ribosomes. The crude initiation factors from sporulating cells were perhaps more active than those from vegetative cells in promoting the initiation factor-dependent synthesis of phage T4 lysozyme by E. coli ribosomes. The crude initiation factor preparations from either vegetative or stationary-phase cells of an asporogenous mutant showed similar ability to promote the in vitro translation of SP01 RNA.  相似文献   
53.
An analysis of enolase expression during differentiation of neuroblastoma clones in homogeneous culture is presented. The enolases expressed in these neuroblast-like cells are identical to those of mouse brain with respect to the examined properties.Our biochemical investigation has premitted us to demonstrate formally that neuroblastoma cells undergo a transition from the embryonic αα form to the neuronal γγ form and contain both enolases as well as the αγ hybrid form during maturation. These results suggest that the same phenomenon must exist in vivo for neuroblasts. In neuroblastoma cells, an increase in both αγ and γγ neuron specific enolases is related to cell maturation and expression of the αγ form precedes that of the γγ form during differentiation. Modulation of neuronal enolase activities is similar in the various conditions of differentiation studied and appears not to be necessarily related with morphological differentiation, although concomitant with an arrest of cell division. The evolution of specific neuronal enolases in neuroblastoma cells parallels that observed in vivo, in brain from embryonic day 15 to post-natal day 7. Moreover, at least one treatment (dimethylsulfoxide) causes an important decrease in the high specific αα activity of these cells as occurs in vivo. This enolase can therefore also be considered as a biochemical marker for neuroblastoma maturation.As observed with other markers and other cell types, neuroblastoma cells in culture express an immature biochemical differentiation of the enolase isozymes.  相似文献   
54.
An investigation of the regeneration ability of explants taken from the floral stem of Brassica napus var. oleifera was performed in the winter cultivars Darmor and Bienvenu. Our purpose was to compare the regeneration ability of the two genotypes, to compare the competence of the different tissues of the stem and then to study histologically the regeneration of shoots. A strong genotypic effect was observed between the two cvs; Bienvenu had a poorer ability to produce shoots when cultured in the presence of benzyladenine: regeneration commenced later; the percentage of explants producing shoots and the number of shoots per regenerating explant were much lower. The comparison between the regeneration ability of different explants, i.e stem segments, internal stem segments, thin cell layer and peels, showed that the superficial tissues were able to regenerate roots but not shoots. Contrariwise, internal stem segments regenerated only shoots. The origin of shoots was investigated in stem segments of cv. Darmor. A kinetic histological analysis showed the basic role played by phloem and phloem-associated cells in shoot formation.  相似文献   
55.
A remarkable property of bacteriophages is their capacity to encapsidate large amounts of DNA during morphogenesis and to maintain their genome in the capsid in a very stable form even under extreme conditions. Even as remarkable is the efficiency with which their genome is ejected from the phage particle and transferred into the host bacteria. Biophysical techniques have led to significant progresses in characterizing these mechanisms. The molecular motor of encapsidation of several phages as well as the organization of viral capsids have been described at atomic resolution. Cryo-electron microscopy and fluorescence microscopy have permitted to describe DNA ejection at the level of single phage particles. Theoretical models of encapsidation and ejection have been proposed that can be confronted to experimental data. This review will present the state of the art on the recent advances brought by biophysics in this field. Reference will be given to the work performed on double-stranded DNA phages and on one of its representative, phage T5, our working model.  相似文献   
56.
DNA ejection from bacteriophage T5 can be passively driven in vitro by the interaction with its specific host receptor. Light scattering was used to determine the physical parameters associated with this process. By studying the ejection kinetics at different temperatures, we demonstrate that an activation energy of the order of 70 k(B)T must be overcome to allow the complete DNA ejection. A complex shape of the kinetics was found whatever the temperature. This shape may be actually understood using a phenomenological model based on a multistep process. Passing from one stage to another requires the mentioned thermal activation of pressurized DNA inside the capsids. Both effects contribute to shorten or to lengthen the pause time between the different stages explaining why the T5 DNA ejection is so slow compared to other types of phage.  相似文献   
57.
58.
A new class of bacteriophage was characterized in purified T5 stocks. Regardless of the host cell, these phages were irreversibly blocked at the first-step-transfer stage under conditions in which whole DNA injection normally takes place. However, they expressed their first-step-transfer functions. These observations confirmed the previously established heterogeneity of T5 bacteriophage populations and provided a new way to define a phage function necessary to release the blocking of T5 DNA injection at the first-step-transfer stage.  相似文献   
59.
Insulin-dependent or type 1 diabetes is a prototypic autoimmune disease whose incidence steadily increased over the past decades in industrialized countries. Recent evidence suggests the importance of the gut microbiota to explain this trend. Here, non-obese diabetic (NOD) mice that spontaneously develop autoimmune type 1 diabetes were treated with different antibiotics to explore the influence of a targeted intestinal dysbiosis in the progression of the disease. A mixture of wide spectrum antibiotics (i.e. streptomycin, colistin and ampicillin) or vancomycin alone were administered orally from the moment of conception, treating breeding pairs, and during the postnatal and adult life until the end of follow-up at 40 weeks. Diabetes incidence significantly and similarly increased in male mice following treatment with these two antibiotic regimens. In NOD females a slight yet not significant trend towards an increase in disease incidence was observed. Changes in gut microbiota composition were assessed by sequencing the V3 region of bacterial 16S rRNA genes. Administration of the antibiotic mixture resulted in near complete ablation of the gut microbiota. Vancomycin treatment led to increased Escherichia, Lactobacillus and Sutterella genera and decreased members of the Clostridiales order and Lachnospiraceae, Prevotellaceae and Rikenellaceae families, as compared to control mice. Massive elimination of IL-17-producing cells, both CD4+TCRαβ+ and TCRγδ+ T cells was observed in the lamina propria of the ileum and the colon of vancomycin-treated mice. These results show that a directed even partial ablation of the gut microbiota, as induced by vancomycin, significantly increases type 1 diabetes incidence in male NOD mice thus prompting for caution in the use of antibiotics in pregnant women and newborns.  相似文献   
60.
Bacteriophage infection is initiated by binding of the virion to a specific receptor located on the host surface. The genome is then released from the capsid and delivered to the host cytoplasm. Our knowledge of these early steps of infection has recently improved. The three-dimensional structure of numerous receptor binding proteins of tailed phages has been solved. Cryo-electron tomography has allowed characterization of the phage-host interactions in a cellular context and at nanometric resolution. The localization and motions of fluorescently labelled phages, receptors and viral DNA were monitored on individual bacteria. Altogether these approaches have revealed the intricacy of these early events and emphasize the link between infection and microbial architecture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号