首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17882篇
  免费   1212篇
  国内免费   26篇
  2023年   128篇
  2022年   241篇
  2021年   475篇
  2020年   317篇
  2019年   352篇
  2018年   581篇
  2017年   470篇
  2016年   637篇
  2015年   899篇
  2014年   1076篇
  2013年   1330篇
  2012年   1470篇
  2011年   1395篇
  2010年   844篇
  2009年   745篇
  2008年   972篇
  2007年   888篇
  2006年   885篇
  2005年   769篇
  2004年   683篇
  2003年   637篇
  2002年   652篇
  2001年   241篇
  2000年   200篇
  1999年   199篇
  1998年   174篇
  1997年   134篇
  1996年   101篇
  1995年   102篇
  1994年   109篇
  1993年   69篇
  1992年   116篇
  1991年   94篇
  1990年   91篇
  1989年   82篇
  1988年   87篇
  1987年   62篇
  1986年   47篇
  1985年   65篇
  1984年   50篇
  1983年   57篇
  1982年   42篇
  1981年   53篇
  1980年   28篇
  1979年   48篇
  1978年   36篇
  1977年   31篇
  1976年   28篇
  1974年   36篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Factors affecting the viability and infectivity of an ectomycorrhizal fungus during moderate concentration by cross-flow filtration were determined. Mycelial suspensions were concentrated with three commercial membrane filters (Prostak Millipore Co., M14 Tech-Sep Co. and Ceraflo Norton Co.) under aseptic conditions. Medium components may reduce the filtration rate due to their low solubility. An antifoam agent did not reduce the average flux rates as much as did the malt extract. Clear unobstructed channels (I.D. 6mm) of the tubular modules (Tech-Sep) gave the best results both in terms of performance (filtration rate) and cell viability. Shear stresses caused by pumping and flow through narrow retentate channels were probably responsible for lowering viability and infectivity. There was no linear relationship between permeate fluxes and cell concentration. There is an optimum pore size both in terms of performance (filtration rate) and cell viability. Physical blockage of large pores by hyphae could explain lower permeate flux rates than those obtained with lower pore sizes membranes.  相似文献   
42.
43.
A cDNA encoding the entire tau subunit of rabbit skeletal muscle phosphorylase kinase was reconstructed and inserted into a plasmid containing the Escherichia coli ptac promoter and a constructed plasmid containing the ptac promoter and bacterial chloramphenicol acetyl transferase (CAT) gene, respectively. A significant phosphorylase kinase activity was found, in the first case. In the second case, a fused protein containing 73 amino acids from the CAT protein was obtained. After renaturation, the CAT-tau subunit protein shows enzymatic activity similar to the HPLC-purified and renatured tau subunit.  相似文献   
44.
The catalytic subunit of protein phosphatase-1 (PP1) isolated from rabbit liver had the same electrophoretic mobility as, and yielded peptide maps identical to those of the 33 kDa form of rabbit skeletal muscle PP1. The predicted amino-acid sequences of PP1 obtained from three rabbit liver cDNA clones were identical to that of PP1 alpha from rabbit skeletal muscle. These findings suggest that the distinctive substrate specificities and regulatory properties of hepatic and skeletal muscle type-1 protein phosphatases are not conferred by the catalytic subunits themselves, but by regulatory subunits that are complexed to the catalytic subunits in vivo.  相似文献   
45.
The 37,000 bp double-stranded DNA genome of bacteriophage Mu behaves as a plaque-forming transposable element of Escherichia coli. We have defined the cis-acting DNA sequences required in vivo for transposition and packaging of the viral genome by monitoring the transposition and maturation of Mu DNA-containing pSC101 and pBR322 plasmids with an induced helper Mu prophage to provide the trans-acting functions. We found that nucleotides 1 to 54 of the Mu left end define an essential domain for transposition, and that sequences between nucleotides 126 and 203, and between 203 and 1,699, define two auxiliary domains that stimulate transposition in vivo. At the right extremity, the essential sequences for transposition require not more than the first 62 base pairs (bp), although the presence of sequences between 63 and 117 bp from the right end increases the transposition frequency about 15-fold in our system. Finally, we have delineated the pac recognition site for DNA maturation to nucleotides 32 to 54 of the Mu left end which reside inside of the first transposase binding site (L1) located between nucleotides 1–30. Thus, the transposase binding site and packaging domains of bacteriophage Mu DNA can be separated into two well-defined regions which do not appear to overlap.Abbreviations attL attachment site left - attR attachment site right - bp base pairs - Kb kilobase pair - nt nucleotide - Pu Purine - Py pyrimidine - Tn transposable element State University of New York, Downstate Medical Center, Brooklyn, NY 11204 USA  相似文献   
46.
47.
48.
E Yagüe  P Béguin  J P Aubert 《Gene》1990,89(1):61-67
The complete nucleotide sequence of the celH gene of Clostridium thermocellum was determined. The open reading frame extended over 2.7-kb DNA fragment and encoded a 900-amino acid (aa) protein (Mr 102,301) which hydrolyzes carboxymethylcellulose, p-nitrophenyl-beta-D-cellobioside, methylumbelliferyl- beta-D-cellobioside, barley beta-glucan, and larchwood xylan. The N terminus showed a typical signal peptide, and a cleavage site after Ser44 was predicted. Two Pro-Thr-Ser-rich regions divided the protein into three approximately equal domains. The central 328-aa region was similar to the N-terminal part, carrying the active site, of C. thermocellum endoglucanase E (EGE; 30.2%). The C-terminal region ended with two conserved 24-aa stretches showing close similarity with those previously described in EGA, EGB, EGD, EGE, EGX, and xylanase from C. thermocellum. Deletions of celH removing up to 327 codons from the 5' end and up to 245 codons from the 3' end of the coding sequence did not affect enzyme activity, confirming that the central domain was indeed responsible for catalytic activity. Production of truncated EGH in Escherichia coli was increased up to 120-fold by fusing fragments containing the 3' portion of the gene with the start of lacZ' present in pTZ19R.  相似文献   
49.
The indole-3-acetic acid (IAA) content in peach pericarp (Prunus persica L. Batsch cv. Merry) was highest at early stage I of development (200 ng/g fresh wt), decreased to the lowest level during stage II, and rose again at stage III to 60–70 ng/g fresh wt. High activity of glutamine synthetase was found in the pericarp during stage I. The soluble peroxidase activity was highest in the meso- and exocarp at stage II, and isoenzymatic changes in this fraction corresponded to the transition from cationic isoenzymes, predominant at stage I, to anionic isoenzymes at stage III. The ionically bound peroxidase activity in these tissues was highest at stage I. The three developmental stages showed marked differences in auxin content and enzyme activities; for peroxidases these changes reflect a developmental expression pattern for the isoenzymes.  相似文献   
50.
Medicago truncatula has all the characteristics required for a concerted analysis of nitrogen-fixing symbiosis withRhizobium using the tools of molecular biology, cellular biology and genetics.M. truncatula is a diploid and autogamous plant has a relatively small genome, and preliminary molecular analysis suggests that allelic heterozygosity is minimal compared with the cross-fertilising tetraploid alfalfa (Medicago sativa). TheM. truncatula cultivar Jemalong is nodulated by theRhizobium meliloti strain 2011, which has already served to define many of the bacterial genes involved in symbiosis with alfalfa. A genotype of Jemalong has been identified which can be regenerated after transformation byAgrobacterium, thus allowing the analysis ofin-vitro-modified genes in an homologous transgenic system. Finally, by virtue of the diploid, self-fertilising and genetically homogeneous character ofM. truncatula, it should be relatively straightforward to screen for recessive mutations in symbiotic genes, to carry out genetic analysis, and to construct an RFLP map for this plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号