首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3581篇
  免费   232篇
  2023年   21篇
  2022年   38篇
  2021年   76篇
  2020年   53篇
  2019年   56篇
  2018年   92篇
  2017年   75篇
  2016年   136篇
  2015年   188篇
  2014年   199篇
  2013年   258篇
  2012年   294篇
  2011年   293篇
  2010年   176篇
  2009年   177篇
  2008年   214篇
  2007年   204篇
  2006年   174篇
  2005年   184篇
  2004年   163篇
  2003年   154篇
  2002年   146篇
  2001年   28篇
  2000年   31篇
  1999年   38篇
  1998年   25篇
  1997年   35篇
  1996年   33篇
  1995年   24篇
  1994年   30篇
  1993年   25篇
  1992年   15篇
  1991年   15篇
  1990年   10篇
  1989年   8篇
  1988年   10篇
  1987年   10篇
  1986年   7篇
  1985年   9篇
  1984年   10篇
  1983年   5篇
  1982年   7篇
  1980年   9篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1973年   7篇
  1971年   4篇
  1946年   5篇
排序方式: 共有3813条查询结果,搜索用时 31 毫秒
201.
The AGAMOUS (AG) gene is necessary for stamen and carpel development and is part of a monophyletic clade of MADS-box genes that also includes SHATTERPROOF1 (SHP1), SHP2, and SEEDSTICK (STK). Here, we show that ectopic expression of either the STK or SHP gene is sufficient to induce the transformation of sepals into carpeloid organs bearing ovules. Moreover, the fact that these organ transformations occur when the STK gene is expressed ectopically in ag mutants shows that STK can promote carpel development in the absence of AG activity. We also show that STK, AG, SHP1, and SHP2 can form multimeric complexes and that these interactions require the SEPALLATA (SEP) MADS-box proteins. We provide genetic evidence for this role of the SEP proteins by showing that a reduction in SEP activity leads to the loss of normal ovule development, similar to what occurs in stk shp1 shp2 triple mutants. Together, these results indicate that the SEP proteins, which are known to form multimeric complexes in the control of flower organ identity, also form complexes to control normal ovule development.  相似文献   
202.
203.
204.
Insulin resistance is a key pathogenic factor of type 2 diabetes (T2DM); in contrast, in type 1 diabetes (T1DM) it is considered a secondary alteration. Increased intramyocellular lipid (IMCL) content accumulation and reduced plasma adiponectin were suggested to be pathogenic events of insulin resistance in T2DM. This study was designed to assess whether IMCL content and plasma adiponectin were also associated with the severity of insulin resistance in T1DM. We studied 18 patients with T1DM, 7 older and overweight/obese patients with T2DM, and 15 nondiabetic, insulin-resistant offspring of T2DM parents (OFF) and 15 healthy individuals (NOR) as appropriate control groups matched for anthropometric features with T1DM patients by means of the euglycemic hyperinsulinemic clamp combined with the infusion of [6,6-2H2]glucose and 1H magnetic resonance spectroscopy of the calf muscles. T1DM and T2DM patients showed reduced insulin-stimulated glucose metabolic clearance rate (MCR: 5.1 +/- 0.6 and 3.2 +/- 0.8 ml x kg(-1) min(-1)) similar to OFF (5.3 +/- 0.4 ml x kg(-1) x min(-1)) compared with NOR (8.5 +/- 0.5 ml x kg(-1) min(-1), P < 0.001). Soleus IMCL content was increased in T1DM (112 +/- 15 AU), T2DM (108 +/- 10 AU) and OFF (82 +/- 13 AU) compared with NOR (52 +/- 7 AU, P < 0.05) and the result was inversely proportional to the MCR (R2 = 0.27, P < 0.001); an association between IMCL content and Hb A1c was found only in T1DM (R2 = 0.57, P < 0.001). Fasting plasma adiponectin was reduced in T2DM (7 +/- 1 microg/ml, P = 0.01) and OFF (11 +/- 1 microg/ml, P = 0.03) but not in T1DM (25 +/- 6 microg/ml), whose plasma level was increased with respect to both OFF (P = 0.03) and NOR (16 +/- 2 microg/ml, P = 0.05). In conclusion, in T1DM, T2DM, and OFF, IMCL content was associated with insulin resistance, demonstrating that IMCL accretion is a marker of insulin resistance common to both primary genetically determined and secondary metabolic (chronic hyperglycemia) alterations. The increased adiponectin levels in insulin-resistant patients with T1DM, in contrast to the reduced levels found in patients with T2DM and in OFF, demonstrated that the relationship of adiponectin to insulin resistance in humans is still unclear.  相似文献   
205.
Chromatin-derived acidic peptides (ACPs) have been shown to acutely modulate hypothalamic catecholamine release. To investigate whether this effect is mediated through membrane polysialylated neural-cell adhesion molecule (PSA-N-CAM), we pretreated rat hypothalamic synaptosomes with neuraminidase enzyme, which partially cleaves sialic acid residues from N-CAM, and perfused them with ACP-1 (Asp-Asp-Ser-Asp-Glu-Glu-Asn) or a more lipophilic derivative, ACP-2 ([Ala-Ile-Ser-Pro]-Asp-Asp-Ser-Asp-Glu-Glu-Asn). We have found that neuraminidase completely abolish the inhibitory effect of ACP-1 on dopamine release, while the inhibitory activity of ACP-1 on norepinephrine release is partially lost. On the other hand, ACP-2 inhibition of dopamine release is not modified by neuraminidase pretreatment.  相似文献   
206.
Lipid peroxidation has been implicated in a variety of pathophysiological processes, including inflammation, atherogenesis, neurodegeneration, and the ageing process. Phospholipid hydroperoxide glutathione peroxidase (GPX4) is the only major antioxidant enzyme known to directly reduce phospholipid hydroperoxides within membranes and lipoproteins, acting in conjunction with alpha tocopherol (vitamin E) to inhibit lipid peroxidation. Here we describe the generation and characterization of GPX4-deficient mice by targeted disruption of the murine Gpx4 locus through homologous recombination in embryonic stem cells. Gpx4(-/-) embryos die in utero by midgestation (E7.5) and are associated with a lack of normal structural compartmentalization. Gpx4(+/-) mice display reduced levels of Gpx4 mRNA and protein in various tissues. Interestingly, cell lines derived from Gpx4(+/-) mice are markedly sensitive to inducers of oxidative stress, including gamma-irradiation, paraquat, tert-butylhydroperoxide, and hydrogen peroxide, as compared to cell lines derived from wild-type control littermates. Gpx4(+/-) mice also display reduced survival in response to gamma-irradiation. Our observations establish GPX4 as an essential antioxidant enzyme in mice and suggest that it performs broad functions as a component of the mammalian antioxidant network.  相似文献   
207.
208.
Systematic substitution of His(6) residue using non-selective hMC4R pentapeptide agonist (Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2)) as the template led to the identification of Bu-Atc(6)(2-aminotetraline-2-carboxylic acid)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) which showed moderate selectivity towards hMC4R over hMC1R. Further SAR studies resulted in the discovery of Penta-5-BrAtc(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) and Penta-5-Me(2)NAtc(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) which are potent hMC4R agonists and are inactive in hMC1R, hMC3R and hMC5R agonist assays.  相似文献   
209.
210.
Inherited resistance to activated protein C has been recognized as a major risk factor for thrombosis. The factor V Leiden mutation, which is detectable by molecular DNA techniques, is responsible for 95% of cases of activated protein C resistance. In our study one patient with venous leg ulcers from a family with a history of thrombosis showed factor V Leiden mutation. Genotypic analysis demonstrated that the patient was homozygous for factor V Leiden. All family members of the index subject showed the same abnormalities. Two were homozygous and 3 were heterozygous for factor V Leiden mutation. The polymerase chain reaction was used to amplify exon 10 of the factor V gene, followed by enzymatic digestion with MnlI for mutation detection. Patients with a family history of thrombosis and factor V Leiden have an increased risk of venous leg ulcers. Screening for factor V Leiden may be indicated in patients with venous leg ulcers and their family members.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号