首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16096篇
  免费   1480篇
  国内免费   8篇
  17584篇
  2022年   137篇
  2021年   242篇
  2020年   152篇
  2019年   184篇
  2018年   258篇
  2017年   222篇
  2016年   390篇
  2015年   669篇
  2014年   706篇
  2013年   903篇
  2012年   1081篇
  2011年   1105篇
  2010年   730篇
  2009年   641篇
  2008年   867篇
  2007年   907篇
  2006年   856篇
  2005年   851篇
  2004年   809篇
  2003年   777篇
  2002年   824篇
  2001年   157篇
  2000年   133篇
  1999年   189篇
  1998年   210篇
  1997年   178篇
  1996年   163篇
  1995年   147篇
  1994年   148篇
  1993年   146篇
  1992年   114篇
  1991年   116篇
  1990年   127篇
  1989年   113篇
  1988年   109篇
  1987年   114篇
  1986年   97篇
  1985年   104篇
  1984年   122篇
  1983年   124篇
  1982年   142篇
  1981年   119篇
  1980年   104篇
  1979年   69篇
  1978年   90篇
  1977年   79篇
  1976年   70篇
  1975年   62篇
  1974年   68篇
  1973年   61篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Summary— Using two-dimensional polyacrylamide gels stained with Coomassie blue we have studied the protein composition of the nuclear matrix obtained from mouse erythroleukemic nuclei kept at O°C throughout the isolation procedure to prepare the high ionic strength resistant fraction (control matrix) or stabilized in vitro or in vivo by different procedures prior to subfractionation (ie 37°C incubation of isolated nuclei; sodium tetrathionate exposure of purified nuclei; heat shock of intact cells). When the matrix obtained from 37°C incubated nuclei was compared with the control matrix, striking differences in the polypeptide pattern were seen if the protein was obtained in both cases from an equivalent number of nuclei. On the other hand, if the same amount of protein for both the samples was applied to the gels the differences were less evident. Sodium tetrathionate stabilization of isolated nuclei and heat shock of intact cells produced a matrix protein pattern that was very similar and differed from that of the in vitro heat-exposed matrix. Using specific polyclonal antisera, we demonstrate that nucleolar proteins B23/numatrin and C23/nucleolin were very abundant in the matrix obtained from chemically-treated nuclei or in vivo heat-stabilized nuclei but were recovered in very small amounts (B23) or completely absent (C23) in the matrix prepared from nuclei heated to 37°C in vitro. Differences were seen also in the recovery of nuclear lamins, and especially lamin B, that was poorly represented in the sodium tetrathionate-stabilized matrix. The results demonstrate that in mouse erythroleukemia cells the increased recovery of nuclear matrix protein that is seen after in vitro heating of isolated nuclei is predominantly due to an additional recovery of the same types of polypeptides that are detected also in the absence of such a treatment. The data also indicate that in vivo heat shock of intact cells produces a nuclear matrix protein pattern that is more similar to the pattern seen after stabilization of purified nuclei with sodium tetrathionate and differs significantly from that obtained by exposing nuclei to 37°C in vitro, unlike to that what previous reports have indicated.  相似文献   
992.
993.
Natural killer (NK) cells are important innate effector cells controlled by an array of activating and inhibitory receptors. Some alleles of the inhibitory killer-cell immunoglobulin-like receptor KIR3DL1 in combination with its HLA class I ligand Bw4 have been genetically associated with slower HIV-1 disease progression. Here, we observed that the presence of HLA-B Bw4 was associated with elevated frequencies of KIR3DL1(+) CD56(dim) NK cells in chronically HIV-1-infected individuals from the rural district of Kayunga, Uganda. In contrast, levels of KIR2DL1(+) CD56(dim) NK cells were decreased, and levels of KIR2DL3(+) CD56(dim) NK cells were unchanged in infected subjects carrying their respective HLA-C ligands. Furthermore, the size of the KIR3DL1(+) NK cell subset correlated directly with viral load, and this effect occurred only in HLA-B Bw4(+) patients, suggesting that these cells expand in response to viral replication but may have relatively poor antiviral capacity. In contrast, no association with viral load was present for KIR2DL1(+) and KIR2DL3(+) NK cells. Interestingly, chronic HIV-1 infection was associated with an increased polyfunctional response in the NK cell compartment, and, upon further investigation, KIR3DL1(+) CD56(dim) NK cells exhibited a significantly increased functional response in the patients carrying HLA-B Bw4. These results indicate that chronic HIV-1 infection is associated with increased NK cell polyfunctionality and elevated levels of KIR3DL1(+) NK cells in Ugandans carrying the HLA-B Bw4 motif.  相似文献   
994.
Mitochondria play an important role on the entire cellular copper homeostatic mechanisms. Alteration of cellular copper levels may thus influence mitochondrial proteome and its investigation represents an important contribution to the general understanding of copper-related cellular effects. In these study we have performed an organelle targeted proteomic investigation focusing our attention on the effect of non-lethal 1mM copper concentration on Saccharomyces cerevisiae mitochondrial proteome. Functional copper effects on yeast mitochondrial proteome were evaluated by using both 2D electrophoresis (2-DE) and liquid chromatography coupled with tandem mass spectrometry. Proteomic data have been then analyzed by different unsupervised meta-analysis approaches that highlight the impairment of mitochondrial functions and the activation of oxidative stress response. Interestingly, our data have shown that stress response generated by 1mM copper treatment determines the activation of S. cerevisiae survival pathway. To investigate these findings we have treated yeast cells responsiveness to copper with hydrogen peroxide and observed a protective role of this metal. These results are suggestive of a copper role in the protection from oxidative stress possibly due to the activation of mechanisms involved in cellular survival and growth.  相似文献   
995.
996.
Single-channel conductance in Cys-loop channels is controlled by the nature of the amino acids in the narrowest parts of the ion conduction pathway, namely the second transmembrane domain (M2) and the intracellular helix. In cationic channels, such as Torpedo ACh nicotinic receptors, conductance is increased by negatively charged residues exposed to the extracellular vestibule. We now show that positively charged residues at the same loop 5 position boost also the conductance of anionic Cys-loop channels, such as glycine (α1 and α1β) and GABA(A) (α1β2γ2) receptors. Charge reversal mutations here produce a greater decrease on outward conductance, but their effect strongly depends on which subunit carries the mutation. In the glycine α1β receptor, replacing Lys with Glu in α1 reduces single-channel conductance by 41%, but has no effect in the β subunit. By expressing concatameric receptors with constrained stoichiometry, we show that this asymmetry is not explained by the subunit copy number. A similar pattern is observed in the α1β2γ2 GABA(A) receptor, where only mutations in α1 or β2 decreased conductance (to different extents). In both glycine and GABA receptors, the effect of mutations in different subunits does not sum linearly: mutations that had no detectable effect in isolation did enhance the effect of mutations carried by other subunits. As in the nicotinic receptor, charged residues in the extracellular vestibule of anionic Cys-loop channels influence elementary conductance. The size of this effect strongly depends on the direction of the ion flow and, unexpectedly, on the nature of the subunit that carries the residue.  相似文献   
997.
Neuronal death pathways following hypoxia–ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox.  相似文献   
998.
Photosynthetic response to high light was determined for Bull kelp, Nereocystis luetkeana (K. Mertens) Postels and Ruprecht in order to understand how this species is affected by short‐term fluctuations in irradiance. Exposure of N. luetkeana blades to high intensity photosynthetically active radiation (1000 µmol photons m?2 s–1) caused increased non‐photochemical quenching of fluorescence and higher de‐epoxidation ratios for xanthophyll pigments indicating that energy‐quenching xanthophylls were used to protect blades against photoinhibition. Despite initiation of these photoprotective mechanisms, maximum photochemical efficiency of photosystem II (Fv/Fm) decreased 40% in response to a 60 min exposure to 1000 µmol photons m?2 s–1 photosynthetically active radiation indicating that photoinhibition had occurred. Light‐saturated rates of oxygen evolution were not changed significantly by the high light treatment. Recovery of maximum photochemical efficiency of photosystem II to within 8% of initial values occurred after a 300‐min dim light period. Younger sections of the blades were slightly more susceptible to high light damage than older sections. Middle sections of the blades were more prone to light‐induced damage at water temperatures of 7°C or 18°C, as compared to 13°C. Exposure to biologically effective ultraviolet‐B radiation (UV‐Bbe) (up to 4.5 kJ m–2 day–1) in photoinhibitory light conditions did not significantly affect light‐induced damage to photosystem II.  相似文献   
999.
TNFα plays key roles in the regulation of inflammation, cell death, and proliferation and its signaling cascade cross-talks with the insulin signaling cascade. PKCδ, a novel PKC isoform, is known to participate in proximal TNFα signaling events. However, it has remained unclear whether PKCδ plays a role in distal TNFα signaling events. Here we demonstrate that PKCδ is activated by TNFα in a delayed fashion that is temporally associated with JNK activation. To investigate the signaling pathways activating PKCδ and JNK, we used pharmacological and genetic inhibitors of NFκB. We found that inhibition of NFκB attenuated PKCδ and JNK activations. Further analysis revealed that ER stress contributes to TNFα-stimulated PKCδ and JNK activations. To investigate the role of PKCδ in TNFα action, we used 29-mer shRNAs to silence PKCδ expression. A reduction of ~90% in PKCδ protein levels reduced TNFα-stimulated stress kinase activation, including JNK. Further, PKCδ was necessary for thapsigargin-stimulated JNK activation. Because thapsigargin is a potent inducer of ER stress, we determined whether PKCδ was necessary for induction of the UPR. Indeed, a reduction in PKCδ protein levels reduced thapsigargin-stimulated CHOP induction, a hallmark of the UPR, but not BiP/GRP78 induction, suggesting that PKCδ does not globally regulate the UPR. Next, the role of PKCδ in TNFα mediated cross-talk with the insulin signaling pathway was investigated in cells expressing human IRS-1 and a 29-mer shRNA to silence PKCδ expression. We found that a reduction in PKCδ protein levels reversed the TNFα-mediated reduction in insulin-stimulated IRS-1 Tyr phosphorylation, Akt activation, and glycogen synthesis. In addition, TNFα-stimulated IRS protein Ser/Thr phosphorylation and degradation were blocked. Our results indicate that: 1) NFκB and ER stress contribute in part to PKCδ activation; 2) PKCδ plays a key role in the propagation of the TNFα signal; and 3) PKCδ contributes to TNFα-induced inhibition of insulin signaling events.  相似文献   
1000.
All general practitioners on the list of a single executive council were contacted and 91% were interviewed. They were asked about the type of family planning service currently provided and their willingness to extend the service. Only 3% said that they were not providing any service at the time of interview, but only 4% stated that they provided a complete range of techniques to all patients; almost two thirds of practitioners only provided advice and the “pill”. Lack of training in family planning techniques emerged as the most important factor in determining the type of service provided. At the time of interview 64% of doctors stated that they would like further training, and 35% of all doctors asked for a full course of clinical training. Many general practitioners (81%) were willing to extend their family planning services but 65% wanted financial reimbursement and 50% needed additional administrative support as prerequisites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号