首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4067篇
  免费   261篇
  2023年   21篇
  2022年   46篇
  2021年   91篇
  2020年   55篇
  2019年   62篇
  2018年   100篇
  2017年   80篇
  2016年   143篇
  2015年   209篇
  2014年   217篇
  2013年   297篇
  2012年   330篇
  2011年   329篇
  2010年   203篇
  2009年   196篇
  2008年   230篇
  2007年   227篇
  2006年   190篇
  2005年   197篇
  2004年   181篇
  2003年   166篇
  2002年   164篇
  2001年   42篇
  2000年   47篇
  1999年   50篇
  1998年   29篇
  1997年   44篇
  1996年   39篇
  1995年   27篇
  1994年   32篇
  1993年   28篇
  1992年   19篇
  1991年   19篇
  1990年   15篇
  1989年   10篇
  1988年   18篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   13篇
  1983年   7篇
  1982年   8篇
  1980年   12篇
  1979年   8篇
  1978年   8篇
  1974年   6篇
  1973年   12篇
  1972年   7篇
  1971年   7篇
  1970年   6篇
排序方式: 共有4328条查询结果,搜索用时 15 毫秒
971.
The chemokine CXCL10 is expressed within the CNS in response to intracerebral infection with mouse hepatitis virus (MHV). Blocking CXCL10 signaling results in increased mortality accompanied by reduced T cell infiltration and increased viral titers within the brain suggesting that CXCL10 functions in host defense by attracting T cells into the CNS. The present study was undertaken to extend our understanding of the functional role of CXCL10 in response to MHV infection given that CXCL10 signaling has been implicated in coordinating both effector T cell generation and trafficking. We show that MHV infection of CXCL10(+/+) or CXCL10(-/-) mice results in comparable levels of T cell activation and similar numbers of virus-specific CD4+ and CD8+ T cells. Subsequent analysis revealed no differences in T cell proliferation, IFN-gamma secretion by virus-specific T cells, or CD8+ T cell cytolytic activity. Analysis of chemokine receptor expression on CD4+ and CD8+ T cells obtained from MHV-immunized CXCL10(+/+) and CXCL10(-/-) mice revealed comparable levels of CXCR3 and CCR5, which are capable of responding to ligands CXCL10 and CCL5, respectively. Adoptive transfer of splenocytes acquired from MHV-immunized CXCL10(-/-) mice into MHV-infected RAG1(-/-) mice resulted in T cell infiltration into the CNS, reduced viral burden, and demyelination comparable to RAG1(-/-) recipients of immune CXCL10(+/+) splenocytes. Collectively, these data imply that CXCL10 functions primarily as a T cell chemoattractant and does not significantly influence T cell effector response following MHV infection.  相似文献   
972.
Flagellin, the structural protein subunit of the bacterial flagellum, is specifically recognized by TLR-5 and has potent immunomodulatory effects. The antitumor effects of purified Salmonella typhimurium flagellin were evaluated in mice transplanted s.c. with a weakly immunogenic murine tumor or with its variant stably transfected to express the highly antigenic human HER-2 oncoprotein. Peritumoral administration of flagellin 8-10 days after tumor implantation did not affect the growth rate of the weakly immunogenic tumor but significantly inhibited growth of the antigenic variant tumor. In contrast, flagellin administered at the time of implantation of the antigenic tumor led to accelerated tumor growth. These contrasting effects of flagellin on tumor growth correlated with the type of immune response induced; i.e., late flagellin administration was associated with an increased IFN-gamma:IL-4 ratio and the decreased frequency of CD4+CD25+ T regulatory cells, whereas flagellin treatment at the time of tumor implantation decreased the IFN-gamma:IL-4 ratio and increased CD4+CD25+ T cell frequency. When the early flagellin treatment was combined with administration of CpG-containing oligodeoxynucleotides, tumor growth was completely suppressed, indicating synergy between flagellin and CpG-containing oligodeoxynucleotides. Together, these data provide evidence that flagellin can have contrasting effects on tumor growth.  相似文献   
973.
The inherent resistance to diseases caused by Aspergillus fumigatus suggests the occurrence of regulatory mechanisms that provide the host with adequate defense without necessarily eliminating the fungus or causing unacceptable levels of host damage. In this study, we show that a division of labor occurs between functionally distinct regulatory T cells (Treg) that are coordinately activated by a CD28/B-7-dependent costimulatory pathway after exposure of mice to Aspergillus conidia. Early in infection, inflammation is controlled by the expansion, activation and local recruitment of CD4+CD25+ Treg capable of suppressing neutrophils through the combined actions of IL-10 and CTLA-4 on indoleamine 2,3-dioxygenase. The levels of IFN-gamma produced in this early phase set the subsequent adaptive stage by conditioning the indoleamine 2,3-dioxygenase-dependent tolerogenic program of dendritic cells and the subsequent activation and expansion of tolerogenic Treg, which produce IL-10 and TGF-beta, inhibit Th2 cells, and prevent allergy to the fungus. The coordinate activation of Treg may, however, be subverted by the fungus, as germinating conidia are capable of interfering with anti-inflammatory and tolerogenic Treg programs. Thus, regulation is an essential component of the host response in infection and allergy to the fungus, and its manipulation may allow the pathogen to overcome host resistance and promote disease.  相似文献   
974.
Mammalian pregnancy is an intriguing immunological phenomenon where the semiallogeneic fetus is not rejected. Tolerance toward the fetus involves a number of mechanisms associated with modifications of the immune status of the mother. In this study, we strongly suggest a novel mechanism for fetal evasion of maternal immune attack, based on the engagement and down-regulation of the activating NK cell receptor NKG2D on PBMC by soluble MHC class I chain-related proteins A and B (collectively termed MIC). A similar immune escape pathway was previously described in tumors. We found that MIC mRNA was constitutively expressed by human placenta and could be up-regulated upon heat shock treatment. Our immunomorphologic studies showed that the MIC expression in placenta was restricted to the syncytiotrophoblast. Immunoelectron microscopy revealed a dual MIC expression in the syncytiotrophoblast: on the apical and basal cell membrane and in cytoplasmic vacuoles as MIC-loaded microvesicles/exosomes. Soluble MIC molecules were present at elevated levels in maternal blood throughout normal pregnancy and were released by placental explants in vitro. Simultaneously, the cell surface NKG2D expression on maternal PBMC was down-regulated compared with nonpregnant controls. The soluble MIC molecules in pregnancy serum were able to interact with NKG2D and down-regulate the receptor on PBMC from healthy donors, with the consequent inhibition of the NKG2D-dependent cytotoxic response. These findings suggest a new physiological mechanism of silencing the maternal immune system that promotes fetal allograft immune escape and supports the view of the placenta as an immunoregulatory organ.  相似文献   
975.
In this work we investigated the effects of retinoic acid (RA) in Sertoli cells. Sertoli cells isolated from 15-day-old Wistar rats were previously cultured for 48 h and then treated with RA for 24 h. RA at high doses (1–10 μM) increased TBARS levels and induced a decrease in cell viability. At low doses (0.1–100 nM) RA did not increase TBARS level. RA also did not increase cell death at these doses. In order to investigate changes in antioxidant defenses we measured the CAT, SOD and GPx activities in Sertoli cells treated with RA. Compared to control, RA increased around 200% SOD activity in all doses tested (0.1–100 nM); GPx activity was increased 407.49, 208.98 and 243.88% (0.1, 1 and 10 nM, respectively); CAT activity was increased 127% with RA 1 nM. To clarify if RA induces ROS production per se, we performed experiments in vitro using 2-deoxyribose as specific substrate of oxidative degradation by OH radical as well as TRAP assay. RA at 10 μM increased 2-deoxyribose degradation, suggesting that some of the RA-induced effects are mediated via OH formation. Furthermore, the total reactive antioxidant potential (TRAP) of the RA was determined. At low concentrations RA has induced no redox activity. Conversely, higher concentration of RA (1–10 μM) increased chemiluminescence. The chemiluminescence produced was directly proportional to radical generation. We provide, for the first time, evidence for a free radical generation by RA. Our results demonstrated that RA plays an important role in Sertoli cells and these effects appear to be mediated by ROS.  相似文献   
976.
The standard rules of genetic translational decoding are altered in specific genes by different events that are globally termed recoding. In Archaea recoding has been unequivocally determined so far only for termination codon readthrough events. We study here the mechanism of expression of a gene encoding for a alpha-l-fucosidase from the archaeon Sulfolobus solfataricus (fucA1), which is split in two open reading frames separated by a -1 frameshifting. The expression in Escherichia coli of the wild-type split gene led to the production by frameshifting of full-length polypeptides with an efficiency of 5%. Mutations in the regulatory site where the shift takes place demonstrate that the expression in vivo occurs in a programmed way. Further, we identify a full-length product of fucA1 in S.solfataricus extracts, which translate this gene in vitro by following programmed -1 frameshifting. This is the first experimental demonstration that this kind of recoding is present in Archaea.  相似文献   
977.
978.
The spindle assembly checkpoint (SAC) monitors chromosome attachment to spindle microtubules. SAC proteins operate at kinetochores, scaffolds mediating chromosome-microtubule attachment. The ubiquitous SAC constituents Mad1 and Mad2 are recruited to kinetochores in prometaphase. Mad2 sequesters Cdc20 to prevent its ability to mediate anaphase onset. Its function is counteracted by p31comet (formerly CMT2). Upon binding Cdc20, Mad2 changes its conformation from O-Mad2 (Open) to C-Mad2 (Closed). A Mad1-bound C-Mad2 template, to which O-Mad2 binds prior to being converted into Cdc20-bound C-Mad2, assists this process. A molecular understanding of this prion-like property of Mad2 is missing. We characterized the molecular determinants of the O-Mad2:C-Mad2 conformational dimer and derived a rationalization of the binding interface in terms of symmetric and asymmetric components. Mutation of individual interface residues abrogates the SAC in Saccharomyces cerevisiae. NMR chemical shift perturbations indicate that O-Mad2 undergoes a major conformational rearrangement upon binding C-Mad2, suggesting that dimerization facilitates the structural conversion of O-Mad2 required to bind Cdc20. We also show that the negative effects of p31comet on the SAC are based on its competition with O-Mad2 for C-Mad2 binding.  相似文献   
979.
Eukaryotic initiation factor 5 (eIF5) plays multiple roles in translation initiation. Its N-terminal domain functions as a GTPase-activator protein (GAP) for GTP bound to eIF2, while its C-terminal region nucleates the interactions between multiple translation factors, including eIF1, which acts to inhibit GTP hydrolysis or P(i) release, and the beta subunit of eIF2. These proteins and the events in which they participate are critical for the accurate recognition of the correct start codon during translation initiation. Here, we report the three-dimensional solution structure of the N-terminal domain of human eIF5, comprising two subdomains, both reminiscent of nucleic-acid-binding modules. The N-terminal subdomain contains the "arginine finger" motif that is essential for GAP function but which, unusually, resides in a partially disordered region of the molecule. This implies that a conformational reordering of this portion of eIF5 is likely to occur upon formation of a competent complex for GTP hydrolysis, following the appropriate activation signal. Interestingly, the N-terminal subdomain of eIF5 reveals an alpha/beta fold structurally similar to both the archaeal orthologue of the beta subunit of eIF2 and, unexpectedly, to eIF1. These results reveal a novel protein fold common to several factors involved in related steps of translation initiation. The implications of these observations are discussed in terms of the mechanism of translation initiation.  相似文献   
980.
E7 oncoprotein is the major transforming activity in human papillomavirus and shares sequence and functional properties with adenovirus E1A and SV40 T-antigen, in particular by targeting the pRb tumor suppressor. HPV 16 E7 forms spherical oligomers that display chaperone activity in thermal denaturation and chemical refolding assays of two model polypeptide substrates, citrate synthase and luciferase, and it does so at substoichiometric concentrations. We show that the E7 chaperone can stably bind model polypeptides and hold them in a state with significant tertiary structure, but does not bind the fully native proteins. The E7 oligomers bind native in vitro translated pRb without the requirement of it being unfolded, since the N-terminal domain of E7 containing the LXCXE binding motif is exposed. The N-terminal domain of E7 can interfere with pRb binding but not with the chaperone activity, which requires the C-terminal domain, as in most reported E7 activities. The ability to bind up to approximately 72 molecules of pRb by the oligomeric E7 form could be important either for sequestering pRb from Rb-E2F complexes or for targeting it for proteasome degradation. Thus, both the dimeric and oligomeric chaperone forms of E7 can bind Rb and various potential targets. We do not know at present if the chaperone activity of E7 plays an essential role in the viral life cycle; however, a chaperone activity may explain the large number of cellular targets reported for this oncoprotein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号