首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4071篇
  免费   264篇
  2023年   23篇
  2022年   48篇
  2021年   91篇
  2020年   55篇
  2019年   62篇
  2018年   102篇
  2017年   80篇
  2016年   143篇
  2015年   209篇
  2014年   217篇
  2013年   297篇
  2012年   330篇
  2011年   329篇
  2010年   203篇
  2009年   196篇
  2008年   230篇
  2007年   227篇
  2006年   190篇
  2005年   197篇
  2004年   181篇
  2003年   166篇
  2002年   164篇
  2001年   42篇
  2000年   47篇
  1999年   50篇
  1998年   29篇
  1997年   44篇
  1996年   39篇
  1995年   27篇
  1994年   32篇
  1993年   28篇
  1992年   19篇
  1991年   19篇
  1990年   15篇
  1989年   10篇
  1988年   18篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   13篇
  1983年   7篇
  1982年   8篇
  1980年   12篇
  1979年   8篇
  1978年   8篇
  1974年   6篇
  1973年   12篇
  1972年   7篇
  1971年   7篇
  1970年   6篇
排序方式: 共有4335条查询结果,搜索用时 156 毫秒
931.
BACKGROUND: To investigate the cardiotoxic role of reactive oxygen species (ROS) and of products derived from catecholamines auto-oxidation, we studied: (1) the response of antioxidant cardiac cellular defence systems to oxidative stress induced by norepinephrine (NE) administration, (2) the effect of NE administration on cardiac beta1-adrenergic receptors by means of receptor binding assay, (3) the cellular morphological alterations related to the biologically cross-talk between the NE administration and cytokines [tumor necrosis factor-alpha (TNF-alpha), monocyte chemotactic protein-1 (MCP-1), interleukins IL6, IL8, IL10]. METHODS AND RESULTS: A total of 195 male rats was used in the experiment. All animals underwent electrocardiogram (EKG) before being sacrificed. The results obtained show that NE administration influences the antioxidant cellular defence system significantly increasing glutathione peroxidase (GPx) activity, glutathione reductase (GR) and superoxide dismutase (SOD). The oxidized glutathione (GSH/GSSG) ratio significantly decreases and malondialdehyde (MDA) levels increase showing a state of lipoperoxidation of cardiac tissue. We describe a significant apoptotic process randomly sparse in the damaged myocardium and the effect of ROS on the NE-mediated TNF-alpha, MCP-1, and IL6, IL8, IL10 production. CONCLUSIONS: Our results support the hypothesis that catecholamines may induce oxidative damage through reactive intermediates resulting from their auto-oxidation, irrespective of their interaction with adrenergic receptors, thus representing an important factor in the pathogenesis of catecholamines-induced cardiotoxicity. The rise of the cardioinhibitory cytokines may be interpreted as the adaptive response of jeopardized myocardium with respect to the cardiac dysfunction resulting from NE injection.  相似文献   
932.
In the post-infarcted heart, grafting of precursor cells may partially restore heart function but the improvement is modest and the mechanisms involved remain to be elucidated. Here, we explored this issue by transplanting C2C12 myoblasts, genetically engineered to express enhanced green fluorescent protein (eGFP) or eGFP and the cardiotropic hormone relaxin (RLX) through coronary venous route to swine with experimental chronic myocardial infarction. The rationale was to deliver constant, biologically effective levels of RLX at the site of cell engraftment. One month after engraftment, histological analysis showed that C2C12 myoblasts selectively settled in the ischaemic scar and were located around blood vessels showing an activated endothelium (ICAM-1-,VCAM-positive). C2C12 myoblasts did not trans-differentiate towards a cardiac phenotype, but did induce extracellular matrix remodelling by the secretion of matrix metalloproteases (MMP) and increase microvessel density through the expression of vascular endothelial growth factor (VEGF). Relaxin-producing C2C12 myoblasts displayed greater efficacy to engraft the post-ischaemic scar and to induce extracellular matrix re-modelling and angiogenesis as compared with the control cells. By echocardiography, C2C12-engrafted swine showed improved heart contractility compared with the ungrafted controls, especially those producing RLX. We suggest that the beneficial effects of myoblast grafting on cardiac function are primarily dependent on the paracrine effects of transplanted cells on extracellular matrix remodelling and vascularization. The combined treatment with myoblast transplantation and local RLX production may be helpful in preventing deleterious cardiac remodelling and may hold therapeutic possibility for post-infarcted patients.  相似文献   
933.
934.
Zara V  Conte L  Trumpower BL 《The FEBS journal》2007,274(17):4526-4539
We have examined the status of the cytochrome bc(1) complex in mitochondrial membranes from yeast mutants in which genes for one or more of the cytochrome bc(1) complex subunits were deleted. When membranes from wild-type yeast were resolved by native gel electrophoresis and analyzed by immunodecoration, the cytochrome bc(1) complex was detected as a mixed population of enzymes, consisting of cytochrome bc(1) dimers, and ternary complexes of cytochrome bc(1) dimers associated with one and two copies of the cytochrome c oxidase complex. When membranes from the deletion mutants were resolved and analyzed, the cytochrome bc(1) dimer was not associated with the cytochrome c oxidase complex in many of the mutant membranes, and membranes from some of the mutants contained a common set of cytochrome bc(1) subcomplexes. When these subcomplexes were fractionated by SDS/PAGE and analyzed with subunit-specific antibodies, it was possible to recognize a subcomplex consisting of cytochrome b, subunit 7 and subunit 8 that is apparently associated with cytochrome c oxidase early in the assembly process, prior to acquisition of the remaining cytochrome bc(1) subunits. It was also possible to identify a subcomplex consisting of subunit 9 and the Rieske protein, and two subcomplexes containing cytochrome c(1) associated with core protein 1 and core protein 2, respectively. The analysis of all the cytochrome bc(1) subcomplexes with monospecific antibodies directed against Bcs1p revealed that this chaperone protein is involved in a late stage of cytochrome bc(1) complex assembly.  相似文献   
935.
Cupiennin 1a (GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH2) is a potent venom component of the spider Cupiennius salei. Cupiennin 1a shows multifaceted activity. In addition to known antimicrobial and cytolytic properties, cupiennin 1a inhibits the formation of nitric oxide by neuronal nitric oxide synthase at an IC50 concentration of 1.3 +/- 0.3 microM. This is the first report of neuronal nitric oxide synthase inhibition by a component of a spider venom. The mechanism by which cupiennin 1a inhibits neuronal nitric oxide synthase involves complexation with the regulatory protein calcium calmodulin. This is demonstrated by chemical shift changes that occur in the heteronuclear single quantum coherence spectrum of 15N-labelled calcium calmodulin upon addition of cupiennin 1a. The NMR data indicate strong binding within a complex of 1 : 1 stoichiometry.  相似文献   
936.
Little is known about the extra- and intracellular stimuli inducing renal stem/progenitor cells to develop into three-dimensionally structured tubules. To study this specific development in a controlled environment, we used an advanced culture technique. Embryonic tissue derived from neonatal rabbit kidney was placed in a perfusion culture container at the interface of an artificial interstitium made of a polyester fleece. Culture was carried out in chemically defined Iscove’s Modified Dulbecco’s Medium (IMDM) for 13 days. Development of tubules was histochemically detected on cryosections labeled with Soybean Agglutinin (SBA). The experiments showed that aldosterone exerts a specific tubulogenic effect. Application of aldosterone (1 × 10−7 M) raised numerous SBA-labeled tubules, while in the absence of the steroid hormone the development of tubules was lacking. Specificity of hormone action was analyzed by the use of aldosterone antagonists. Administration of spironolactone (1 × 10−4 M) and canrenoate (1 × 10−5 M) completely inhibited the development of tubules. Finally, disrupting the intracellular molecular complex of the mineralocorticoid receptor (MR) and heat shock proteins by geldanamycin (2 μg/ml) prevented the development of tubules. Our results suggest that the tubulogenic effect induced by aldosterone is attributed to both hormone binding and an undisturbed intracellular response of the MR.  相似文献   
937.
938.
939.

Background

Francisella tularensis is a gram negative, facultative intracellular bacterium that is the etiological agent of tularemia. F. novicida is closely related to F. tularensis but has low virulence for humans while being highly virulent in mice. IglA is a 21 kDa protein encoded by a gene that is part of an iglABCD operon located on the Francisella pathogenicity island (FPI).

Results

Bioinformatics analysis of the FPI suggests that IglA and IglB are components of a newly described type VI secretion system. In this study, we showed that IglA regulation is controlled by the global regulators MglA and MglB. During intracellular growth IglA production reaches a maximum at about 10 hours post infection. Biochemical fractionation showed that IglA is a soluble cytoplasmic protein and immunoprecipitation experiments demonstrate that it interacts with the downstream-encoded IglB. When the iglB gene was disrupted IglA could not be detected in cell extracts of F. novicida, although IglC could be detected. We further demonstrated that IglA is needed for intracellular growth of F. novicida. A non-polar iglA deletion mutant was defective for growth in mouse macrophage-like cells, and in cis complementation largely restored the wild type macrophage growth phenotype.

Conclusion

The results of this study demonstrate that IglA and IglB are interacting cytoplasmic proteins that are required for intramacrophage growth. The significance of the interaction may be to secrete effector molecules that affect host cell processes.  相似文献   
940.
Several viruses, including influenza, induce an imbalance of intracellular redox state toward pro-oxidant conditions. Through different mechanisms these alterations contribute both to influenza virus replication and to the pathogenesis of virus-induced disease. At the same time, influenza virus activates several intracellular signaling pathways involved in important physiological functions of the cell. Interestingly, many of these pathways are finely regulated by small changes in intracellular redox state, and the virus-induced redox imbalance might also control viral replication through this mechanism. Here we review the main intracellular redox-sensitive pathways activated upon influenza infection and involved in regulating viral replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号