首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3424篇
  免费   267篇
  3691篇
  2024年   1篇
  2023年   8篇
  2022年   26篇
  2021年   59篇
  2020年   24篇
  2019年   29篇
  2018年   44篇
  2017年   35篇
  2016年   88篇
  2015年   111篇
  2014年   147篇
  2013年   226篇
  2012年   264篇
  2011年   248篇
  2010年   187篇
  2009年   166篇
  2008年   228篇
  2007年   240篇
  2006年   221篇
  2005年   187篇
  2004年   220篇
  2003年   207篇
  2002年   195篇
  2001年   36篇
  2000年   35篇
  1999年   38篇
  1998年   87篇
  1997年   47篇
  1996年   45篇
  1995年   35篇
  1994年   34篇
  1993年   33篇
  1992年   23篇
  1991年   21篇
  1990年   12篇
  1989年   14篇
  1988年   15篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   8篇
  1983年   2篇
  1982年   9篇
  1981年   9篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
排序方式: 共有3691条查询结果,搜索用时 0 毫秒
991.
Antimicrobial peptides provide a defense system against microorganisms. One class of these molecules binds lipophilic substrates and is therefore directed against gram-negative bacteria. This family includes proteins related to bactericidal/permeability-increasing protein (BPI). We characterized an approximately 100-kb cluster of three human genes named RYSR, RYA3, and RY2G5 that are related to the BPI family. The RY cluster maps to 20q11.21, >5 Mb upstream of the BPI cluster. The RY and BPI genes have similar exon structures, indicating that they were derived by duplication from a common ancestor. We identified mouse BPI-related and RY orthologues in syntenic regions, indicating that the gene family expanded before mouse and human diverged. Expression analyses show that RYs are strongly expressed in the olfactory epithelium, suggesting that they also could act as odorant transporters or detoxification agents in the olfactory system. Together, these data show how mammals diversified their antimicrobial defenses/olfactory pathways through a duplication-driven adaptive selection process.  相似文献   
992.
993.
B1 and B2 are two highly homologous isoforms of the vacuolar H+-ATPase (V-ATPase) 56-kDa B subunit. We investigated whether the B2 subunit is expressed alongside B1 in proton-secreting cells of the rodent kidney collecting duct (intercalated cells, IC) and epididymis (clear cells) by using antibodies against distinct COOH-terminal peptides from the two B isoforms. B2 was detected not only in the kidney proximal tubule, thick ascending limb, distal convoluted tubule, and connecting segment but also in A- and B-type IC of collecting ducts (CD) in both rat and mouse. B2 had a predominant cytoplasmic localization in most IC but was clearly located in a tighter apical band together with the V-ATPase 31-kDa E subunit in some A-IC, especially in the medulla. Apical membrane staining was confirmed by immunogold electron microscopy. B2 was very weakly expressed on the basolateral membranes of B-IC in control kidney CD, but some connecting segment B-IC had more distinct basolateral staining. In response to chronic carbonic anhydrase inhibition by acetazolamide, many A-IC showed a strong apical membrane localization of B2, where it colocalized with E and B1. In rat and mouse epididymis, B2 isoform expression was detected in clear cells, where it was concentrated in subapical vesicles. Unlike B1, B2 did not colocalize with the E subunit in the apical microvilli. These findings indicate that in addition to its role in the acidification of intracellular organelles, the B2 isoform could also contribute to transepithelial proton secretion and the maintenance of acid-base homeostasis. vacuolar H+-ATPase B subunit; intercalated cells; clear cells; urogenital tract; immunofluorescence  相似文献   
994.
Worm-running is behaviour in which a chick runs carrying a worm-like object while flock mates follow and attempt to grab the object from its beak. We hypothesised that social ranks based on worm-running frequency are stable over time and are positively correlated with social ranks based on success in aggressive interactions when older. At 8-12 days of age, we scored worm-running in 17 groups of 12 female White Leghorn chicks during three 10-min tests. Based on instantaneous scans at 5-s intervals, the bird carrying the 'worm' most often was placed in rank one and so on down the rank order. These tests were repeated at 68-70 days of age. An aggression index for each bird was calculated as the number of aggressive acts given, divided by the number given and received, during three 1-h observation periods when the birds were 68-70 days. Ranks obtained in worm-running tests were positively correlated over the two age periods (P < 0.05) but were not correlated with ranks based on the aggression index (P > 0.05). Our results indicate that worm-running ranks are not predictive of success in aggressive interactions. Instead, worm-running fits some criteria for play.  相似文献   
995.
Erwinia chrysanthemi is a phytopathogenic soil enterobacterium closely related to Escherichia coli. Both species respond to hyperosmotic pressure and to external added osmoprotectants in a similar way. Unexpectedly, the pools of endogenous osmolytes show different compositions. Instead of the commonly accumulated glutamate and trehalose, E. chrysanthemi strain 3937 promotes the accumulation of glutamine and alpha-glucosylglycerate, which is a new osmolyte for enterobacteria, together with glutamine. The amounts of the three osmolytes increased with medium osmolarity and were reduced when betaine was provided in the growth medium. Both glutamine and glutamate showed a high rate of turnover, whereas glucosylglycerate stayed stable. In addition, the balance between the osmolytes depended on the osmolality of the medium. Glucosylglycerate and glutamate were the major intracellular compounds in low salt concentrations, whereas glutamine predominated at higher concentrations. Interestingly, the ammonium content of the medium also influenced the pool of osmolytes. During bacterial growth with 1 mM ammonium in stressing conditions, more glucosylglycerate accumulated by far than the other organic solutes. Glucosylglycerate synthesis has been described in some halophilic archaea and bacteria but not as a dominant osmolyte, and its role as an osmolyte in Erwinia chrysanthemi 3937 shows that nonhalophilic bacteria can also use ionic osmolytes.  相似文献   
996.
Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.  相似文献   
997.
998.
999.
Whether the myogenic regulatory factors (MRFs) of the MyoD family can discriminate among the muscle gene targets for the proper and reproducible formation of skeletal muscle is a recurrent question. We have previously shown that, in Xenopus laevis, myogenin specifically transactivated muscle structural genes in vivo. In the present study, we used the Xenopus model to examine the role of XMyoD, XMyf5, and XMRF4 for the transactivation of the (nicotinic acetylcholine receptor) nAChR genes in vivo. During early Xenopus development, the expression patterns of nAChR subunit genes proved to be correlated with the expression patterns of the MRFs. We show that XMyf5 specifically induced the expression of the delta-subunit gene in cap animal assays and in endoderm cells of Xenopus embryos but was unable to activate the expression of the gamma-subunit gene. In embryos, overexpression of a dominant-negative XMyf5 variant led to the repression of delta-but not gamma-subunit gene expression. Conversely, XMyoD and XMRF4 activated gamma-subunit gene expression but were unable to activate delta-subunit gene expression. Finally, all MRFs induced expression of the alpha-subunit gene. These findings strengthen the concept that one MRF can specifically control a subset of muscle genes that cannot be activated by the other MRFs.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号