首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   48篇
  国内免费   1篇
  2022年   4篇
  2021年   9篇
  2020年   8篇
  2019年   13篇
  2018年   9篇
  2017年   4篇
  2016年   17篇
  2015年   19篇
  2014年   16篇
  2013年   29篇
  2012年   35篇
  2011年   20篇
  2010年   22篇
  2009年   12篇
  2008年   26篇
  2007年   20篇
  2006年   19篇
  2005年   15篇
  2004年   23篇
  2003年   25篇
  2002年   22篇
  2001年   19篇
  2000年   21篇
  1999年   23篇
  1998年   10篇
  1997年   8篇
  1996年   11篇
  1995年   12篇
  1994年   7篇
  1993年   4篇
  1992年   10篇
  1991年   11篇
  1990年   12篇
  1989年   11篇
  1988年   9篇
  1987年   13篇
  1986年   16篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   7篇
  1981年   8篇
  1980年   4篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1974年   5篇
  1973年   5篇
  1972年   3篇
  1969年   3篇
排序方式: 共有644条查询结果,搜索用时 28 毫秒
101.
Abstract: Transmitter release was elicited in two ways from cultured cells filled with acetylcholine: (a) in a biochemical assay by successive addition of a calcium ionophore and calcium and (b) electrophysiologically, by electrical stimulation of individual cells and real-time recording with an embryonic Xenopus myocyte. Glioma C6-Bu-1 cells were found to be competent for Ca2+-dependent and quantal release. In contrast, no release could be elicited from mouse neuroblastoma N18TG-2 cells. However, acetylcholine release could be restored when N18TG-2 cells were transfected with a plasmid coding for mediatophore. Mediatophore is a protein of nerve terminal membranes purified from the Torpedo electric organ on the basis of its acetylcholine-releasing capacity. The transfected N18TG-2 cells expressed Torpedo mediatophore in their plasma membrane. In response to an electrical stimulus, they generated in the myocyte evoked currents that were curare sensitive and calcium dependent and displayed discrete amplitude levels, like in naturally occurring synapses.  相似文献   
102.
103.
104.
105.
The major histocompatibility complex (MHC) presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor). Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus) and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250bp) and DRB exon 2 (228 bp). MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4–15.8% divergence) and translated into 1 to 21 (1.3–27.6% divergence) amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005), indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host.  相似文献   
106.
Although rabbit ear vessels are readily accessible, the veins can collapse and thrombose after multiple venipunctures, and the artery may undergo vasospasm when repeatedly catheterized. Twenty-two male and female New Zealand White rabbits were cannulated with the catheter tip located in the jugular vein. The mean life of the port was noted to be approximately 3.5 months, with ranges of 3 days to 10 months. With proper maintenance and care, vascular access ports are a useful alternative to multiple venipuncture for long-term studies, thereby sparing marginal and central vessels and minimizing stress to both animals and investigators.  相似文献   
107.
We study two different two-dimensional reductions of the Hodgkin-Huxley equations. We show that they display the same qualitative bifurcation scheme as the original equations but overestimate the current range where periodic emission occurs. This is essentially due to the assumption that the evolution of the sodium activation variable m is instantaneous with respect to the dynamics of the variables h and n, an hypothesis that breaks down at high values of the injected current. To prove this point we compare the current-amplitude relation, the current-frequency relation, and the shapes of individual spikes for the two reduced models to the results obtained for the original Hodgkin-Huxley model and for a three dimensional model with instantaneous sodium activation. We show that a more satisfying agreement with the original Hodgkin-Huxley equations is obtained if we modify the evolution equation for the potential by incorporating the prominent features of the dynamics of m.  相似文献   
108.
Increasing evidence suggests that in crops, nocturnal water use could represent 30% of daytime water consumption, particularly in semi‐arid and arid areas. This raises the questions of whether nocturnal transpiration rates (TRN) are (1) less influenced by drought than daytime TR (TRD), (2) increased by higher nocturnal vapor pressure deficit (VPDN), which prevails in such environments and (3) involved in crop drought tolerance. In this investigation, we addressed those questions by subjecting two wheat genotypes differing in drought tolerance to progressive soil drying under two long‐term VPDN regimes imposed under naturally fluctuating conditions. A first goal was to characterize the response curves of whole‐plant TRN and TRN/TRD ratios to progressive soil drying. A second goal was to examine the effect of VPDN increase on TRN response to soil drying and on 13 other developmental traits. The study revealed that under drought, TRN was not responsive to progressive soil drying and – intriguingly – that TRN seemingly increased with drought under high VPDN consistently for the drought‐sensitive genotype. Because TRD was concomitantly decreasing with progressive drought, this resulted in TRN representing up to 70% of TRD at the end of the drydown. In addition, under drought, VPDN increase was found not to influence traits such as leaf area or stomata density. Overall, those findings indicate that TRN contribution to daily water use under drought might be much higher than previously thought, that it is controlled by specific mechanisms and that decreasing TRN under drought might be a valuable trait for improving drought tolerance.  相似文献   
109.

Background and aims

Soil nutrient dynamics are affected by root-microbe interactions and plant development. We investigated the influence of plant growth stage and arbuscular mycorrhiza fungi (AMF) on carbon (C) and nitrogen (N) rhizodeposition and the transfer into the microbial biomass (MB).

Methods

Pea varieties (Pisum sativum L.) with (Frisson) and without mycorrhiza (P2) were 13C-15N-labelled and harvested at 45, 63, 71, and 95 days after sowing. Mycorrhization, MB, total C, N, 13C, 15N were determined in plant and soil compartments to calculate C and N derived from rhizodeposition (CdfR, NdfR).

Results

Total CdfR increased until pea maturity, NdfR until end of flowering. Their relative contribution steadily decreased over time, accounting for 4–10% of total plant C and N at harvest. Rhizodeposition contributed between 1 and 6% to MB C and N, although 20% of the rhizodeposits were discovered in the MB. Frisson released more NdfR than P2 but it was not possible to accurately estimate AMF effects on C and N due to differences in biomass partitioning.

Conclusions

CdfR followed an even flow from early growth until senescence. NdfR flow ceased after flowering possibly due to N relocation within the plant. Rhizodeposits contribute very little to MB in our study.
  相似文献   
110.
The unicellular Cyanobacterium Cyanothece sp. ATCC 51142, grown under alternating 12-h light/12-h dark conditions, temporally separated N2 fixation from photosynthesis. The regulation of photosynthesis was studied using fluorescence spectra and kinetics to determine changes in state transitions and photosystem organization. The redox poise of the plastoquinone (PQ) pool appeared to be central to this regulation. Respiration supported N2 fixation by oxidizing carbohydrate granules, but reduced the PQ pool. This induced state 2 photosystem II monomers and lowered the capacity for O2 evolution. State 2 favored photosystem I trimers and cyclic electron transport, which could stimulate N2 fixation; the stimulation suggested an ATP limitation to N2 and CO2 fixation. The exhaustion of carbohydrate granules at around 6 h in the dark resulted in reduced respiratory electron flow, which led to a more oxidized PQ pool and produced a sharp transition from state 2 to state 1. This transient state 1 returned to state 2 in the remaining hours of darkness. In the light phase, photosystem II dimerization correlated with increased phycobilisome coupling to photosystem II (state 1) and increased rates of O2 evolution. However, dark adaptation did not guarantee state 2 and left photosystem I centers in a mostly monomeric state at certain times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号