首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   31篇
  230篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   12篇
  2011年   12篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   10篇
  2006年   13篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  1999年   6篇
  1998年   9篇
  1997年   2篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   9篇
  1990年   2篇
  1987年   2篇
  1985年   3篇
  1984年   3篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1965年   2篇
  1959年   1篇
  1956年   1篇
  1951年   1篇
  1925年   1篇
  1924年   2篇
  1923年   1篇
排序方式: 共有230条查询结果,搜索用时 0 毫秒
101.
102.
Chromosome evolution has been demonstrated to have profound effects on diversification rates and speciation in angiosperms. While polyploidy has predated some major radiations in plants, it has also been related to decreased diversification rates. There has been comparatively little attention to the evolutionary role of gains and losses of single chromosomes, which may or not entail changes in the DNA content (then called aneuploidy or dysploidy, respectively). In this study we investigate the role of chromosome number transitions and of possible associated genome size changes in angiosperm evolution. We model the tempo and mode of chromosome number evolution and its possible correlation with patterns of cladogenesis in 15 angiosperm clades. Inferred polyploid transitions are distributed more frequently towards recent times than single chromosome gains and losses. This is likely because the latter events do not entail changes in DNA content and are probably due to fission or fusion events (dysploidy), as revealed by an analysis of the relationship between genome size and chromosome number. Our results support the general pattern that recently originated polyploids fail to persist, and suggest that dysploidy may have comparatively longer-term persistence than polyploidy. Changes in chromosome number associated with dysploidy were typically observed across the phylogenies based on a chi-square analysis, consistent with these changes being neutral with respect to diversification.  相似文献   
103.

Background

Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms.

Results

Mitochondrial DNA sequences were obtained for four species of Galápagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1α sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands.

Conclusions

The gene genealogies of Galápagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galápagos mockingbirds and their parasites.  相似文献   
104.
Recent identification of the modular CLS motifs responsible for cyclins A and E localization on centrosomes has revealed a tight linkage between the nuclear and centrosomal cycles. These G1/S cyclins must localize on the centrosome in order for DNA replication to occur in the nucleus, whereas essential DNA replication factors also function on the centrosome to prevent centrosome overduplication. Both events are dependent on the presence of an intact CLS within each cyclin. Here we compare the cyclins A and E CLSs at the structural and functional levels and identify a new cyclin A CLS mutant that disrupts all CLS functions and reduces the affinity of cyclin A for Cdk2. Analysis of interactions of the CLS motif within the cyclin molecules highlights the importance of the cyclin CBOX1 region for Cdk2 binding.Key words: cyclin A, cyclin E, Cdk2, centrosome, CLS, PSTAIRE, DNA synthesis  相似文献   
105.
106.
Aim Based on extensive range‐wide sampling, we address the phylogeographical history of one of the most widespread and taxonomically complex sedges in Europe, Carex nigra s. lat. We compare the genetic structure of the recently colonized northern areas (front edge) and the long‐standing southern areas (rear edge), and assess the potential genetic basis of suggested taxonomic divisions at the rank of species and below. Location Amphi‐Atlantic, central and northern Europe, circum‐Mediterranean mountain ranges, central Siberia, Himalayas. Methods A total of 469 individuals sampled from 83 populations, covering most of the species’ range, were analysed with amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) markers. Bayesian clustering, principal coordinates analysis, and estimates of diversity and differentiation were used for the analysis of AFLP data. CpDNA data were analysed with statistical parsimony networks and maximum parsimony and Bayesian inference of phylogenetic trees. Results Overall genetic diversity was high, but differentiation among populations was limited. Major glacial refugia were inferred in the Mediterranean Basin and in western Russia; in addition, there may have been minor refugia in the North Atlantic region. In the southern part of the range, we found high levels, but geographically quite poorly structured genetic diversity, whereas the levels of genetic diversity varied among different areas in the north. North American populations were genetically very similar to the European populations. Main conclusions The data are consistent with extensive gene flow, which has obscured the recent history of the taxon. The limited differentiation in the south probably results from the mixing of lineages expanding from several local refugia. Northward post‐glacial colonization resulted in a leading‐edge pattern of low diversity in the Netherlands, Belgium, Scotland and Iceland, whereas the observed high diversity levels in Fennoscandia suggest broad‐fronted colonization from the south as well as from the east. The patterns found in the American populations are consistent with post‐glacial colonization, possibly even with anthropogenic introduction from Europe. Our data also suggest that the tussock‐forming populations of C. nigra, often referred to as a distinct species (Carex juncella), represent an ecotype that has originated repeatedly from different populations with creeping rhizomes.  相似文献   
107.
108.
DNA microarray technology is a powerful tool for getting an overview of gene expression in biological samples. Although the successful use of microarray-based expression analysis was demonstrated in a number of applications, the main problem with this approach is the fact that expression levels deduced from hybridization experiments do not necessarily correlate with RNA concentrations. Moreover oligonucleotide probes corresponding to the same gene can give different hybridization signals. Apart from cross-hybridizations and differential splicing, this could be due to secondary structures of probes or targets. In addition, for low-copy genes, hybridization equilibrium may be reached after hybridization times much longer than the one commonly used (overnight, i.e., 15 h). Thus, hybridization signals could depend on kinetic properties of the probe, which may vary between different oligonucleotide probes immobilized on the same microarray. To validate this hypothesis, on-chip hybridization kinetics and duplex thermostability analysis were performed using oligonucleotide microarrays containing 50-mer probes corresponding to 10 mouse genes. We demonstrate that differences in hybridization kinetics between the probes exist and can influence the interpretation of expression data. In addition, we show that using on-chip hybridization kinetics, quantification of targets is feasible using calibration curves.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号