首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4087篇
  免费   344篇
  国内免费   1篇
  4432篇
  2023年   40篇
  2022年   81篇
  2021年   139篇
  2020年   106篇
  2019年   111篇
  2018年   115篇
  2017年   111篇
  2016年   132篇
  2015年   218篇
  2014年   210篇
  2013年   284篇
  2012年   301篇
  2011年   292篇
  2010年   232篇
  2009年   181篇
  2008年   170篇
  2007年   158篇
  2006年   138篇
  2005年   124篇
  2004年   111篇
  2003年   103篇
  2002年   82篇
  2001年   58篇
  2000年   75篇
  1999年   38篇
  1998年   23篇
  1997年   34篇
  1996年   33篇
  1995年   24篇
  1994年   30篇
  1993年   25篇
  1992年   43篇
  1991年   26篇
  1990年   36篇
  1989年   25篇
  1988年   21篇
  1987年   32篇
  1986年   29篇
  1985年   28篇
  1984年   19篇
  1983年   19篇
  1982年   22篇
  1981年   23篇
  1980年   16篇
  1979年   23篇
  1978年   17篇
  1977年   25篇
  1975年   17篇
  1972年   16篇
  1970年   15篇
排序方式: 共有4432条查询结果,搜索用时 15 毫秒
61.
In insect societies, the presence of reproductives or eggs has been shown to shape several biological traits in the colony members. Social interactions are one of these traits that involve modification of the communication system of the entire colony. Many studies described the role of chemical compounds and dominance behaviors in the presence of reproductive but vibratory behaviors received very few investigations. Yet, vibratory behaviors are ideal candidates, particularly for subterranean species like termites, as they could be quickly transmitted through the substrate and could be very diversified (origin, modulation). Here, we investigated whether the presence of reproductives/eggs affects the vibratory behavior (body‐shaking) of workers in the subterranean termite Reticulitermes flavipes. Our results reveal that the presence of reproductives or eggs triggers an increase of workers' body‐shaking, independent of their colony of origin after 24 hr. We hypothesize that vibratory communication could be used to transfer information about the presence of reproductives and eggs to the entire colony, suggesting that vibratory behaviors could serve as an important yet neglected mediator of social regulation.  相似文献   
62.
Journal of Bioenergetics and Biomembranes - S-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases,...  相似文献   
63.
64.
65.
Probiotics and Antimicrobial Proteins - Bacterial spores of the genus Bacillus are being evaluated as adjuvant molecules capable of improving the immune response to vaccines. In this study, we...  相似文献   
66.
67.
Spencer G. Lucas 《Ichnos》2013,20(1-2):5-38
Tetrapod footprints have a fossil record in rocks of Devonian-Neogene age. Three principal factors limit their use in biostratigraphy and biochronology (palichnostratigraphy): invalid ichnotaxa based on extramorphological variants, slow apparent evolutionary turnover rates and facies restrictions. The ichnotaxonomy of tetrapod footprints has generally been oversplit, largely due to a failure to appreciate extramorphological variation. Thus, many tetrapod footprint ichnogenera and most ichnospecies are useless phantom taxa that confound biostratigraphic correlation and biochronological subdivision. Tracks rarely allow identification of a genus or species known from the body fossil record. Indeed, almost all tetrapod footprint ichnogenera are equivalent to a family or a higher taxon (order, superorder, etc.) based on body fossils. This means that ichnogenera necessarily have much longer temporal ranges and therefore slower apparent evolutionary turnover rates than do body fossil genera. Because of this, footprints cannot provide as refined a subdivision of geological time as do body fossils. The tetrapod footprint record is much more facies controlled than the tetrapod body fossil record. The relatively narrow facies window for track preservation, and the fact that tracks are almost never transported, redeposited or reworked, limits the facies that can be correlated with any track-based biostratigraphy.

A Devonian-Neogene global biochronology based on tetrapod footprints generally resolves geologic time about 20 to 50 percent as well as does the tetrapod body fossil record. The following globally recognizable time intervals can be based on the track record: (1) Late Devonian; (2) Mississippian; (3) Early-Middle Pennsylvanian; (4) Late Pennsylvanian; (5) Early Permian; (6) Late Permian; (7) Early-Middle Triassic; (8) late Middle Triassic; (9) Late Triassic; (10) Early Jurassic; (11) Middle-Late Jurassic; (12) Early Cretaceous; (13) Late Cretaceous; (14) Paleogene; (15) Neogene. Tetrapod footprints are most valuable in establishing biostratigraphic datum points, and this is their primary value to understanding the stratigraphic (temporal) dimension of tetrapod evolution.  相似文献   
68.
Palaeosauropus primaevus is a tetrapod footprint ichnotaxon first described from the Upper Mississippian (Visean) Mauch Chunk Formation near Pottsville, Pennsylvania, United States. Our relocation of the type locality and stratigraphic horizon of P. primaevus, a long-available but unstudied collection of tetrapod footprints from these strata, and our new collections allow a much fuller characterization of this ichnotaxon and the range of extramorphological variation encompassed by it. P. primaevus is characterized as the footprints of a quadruped with a pentadactyl pes and a tetradactyl manus, in which the pes frequently oversteps the manus and with which tail drags are common. In the manus, all digits are relatively broad and have rounded tips, digit III is longest, and digit IV is more widely separated from digit III than the other digits are from each other. The pes has five digits that are also wide and blunt-tipped, digit IV is longest, and digit V projects nearly laterally. P. primaevus is the track of a relatively large temnospondyl (~400 mm gleno-acetabular length) and documents the Mississippian presence of such large amphibians long before their body fossil record. Palaeosauropus also occurs in Mississippian strata in Indiana and is distinguished from the geologically younger but similar temnospondyl footprint ichnogenus Limnopus by its relatively narrower manus and pes that lack broad and rounded sole impressions.  相似文献   
69.
Intestinal alkaline phosphatase (IAP) is an enzyme of the brush border of the enterocyte. The activity of IAP biphasically depends on calcium. Although calcium increases IAP activity, when calcium is higher than 20 mmole/L, IAP activity decreases and the amount of an aggregated form increases. The reversibility of the effect of calcium and the aggregation process are unknown. The isoelectric point of the enzyme was higher in the presence of calcium, but was the same for the enzyme and the aggregated form. The treatment with EGTA after calcium addition did not restore the enzymatic activity but produced desaggregation of the enzyme and increase in the monomeric subunits of IAP. It is concluded that the binding of calcium does not produce important modifications on the structure of the protein, that the inhibitory effect is not reversible and that calcium could be involved in the stability of the structure of the enzyme.  相似文献   
70.

Aim

To determine whether expression of a cyanobacterial flavodoxin in soil bacteria of agronomic interest confers protection against the widely used herbicides paraquat and atrazine.

Methods and Results

The model bacterium Escherichia coli, the symbiotic nitrogen‐fixing bacterium Ensifer meliloti and the plant growth‐promoting rhizobacterium Pseudomonas fluorescens Aur6 were transformed with expression vectors containing the flavodoxin gene of Anabaena variabilis. Expression of the cyanobacterial protein was confirmed by Western blot. Bacterial tolerance to oxidative stress was tested in solid medium supplemented with hydrogen peroxide, paraquat or atrazine. In all three bacterial strains, flavodoxin expression enhanced tolerance to the oxidative stress provoked by hydrogen peroxide and by the reactive oxygen species‐inducing herbicides, witnessed by the enhanced survival of the transformed bacteria in the presence of these oxidizing agents.

Conclusions

Flavodoxin overexpression in beneficial soil bacteria confers tolerance to oxidative stress and improves their survival in the presence of the herbicides paraquat and atrazine. Flavodoxin could be considered as a general antioxidant resource to face oxidative challenges in different micro‐organisms.

Significance and Impact of the study

The use of plant growth‐promoting rhizobacteria or nitrogen‐fixing bacteria with enhanced tolerance to oxidative stress in contaminated soils is of significant agronomic interest. The enhanced tolerance of flavodoxin‐expressing bacteria to atrazine and paraquat points to potential applications in herbicide‐treated soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号