首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4500篇
  免费   366篇
  4866篇
  2023年   39篇
  2022年   83篇
  2021年   129篇
  2020年   83篇
  2019年   105篇
  2018年   145篇
  2017年   111篇
  2016年   186篇
  2015年   275篇
  2014年   245篇
  2013年   337篇
  2012年   392篇
  2011年   390篇
  2010年   194篇
  2009年   178篇
  2008年   247篇
  2007年   239篇
  2006年   212篇
  2005年   179篇
  2004年   167篇
  2003年   159篇
  2002年   159篇
  2001年   62篇
  2000年   37篇
  1999年   49篇
  1998年   41篇
  1997年   35篇
  1996年   31篇
  1995年   19篇
  1994年   17篇
  1993年   12篇
  1992年   17篇
  1991年   22篇
  1990年   22篇
  1989年   10篇
  1988年   11篇
  1987年   16篇
  1986年   10篇
  1985年   18篇
  1984年   17篇
  1983年   17篇
  1982年   15篇
  1981年   12篇
  1980年   8篇
  1979年   12篇
  1975年   11篇
  1974年   13篇
  1973年   11篇
  1968年   9篇
  1966年   7篇
排序方式: 共有4866条查询结果,搜索用时 15 毫秒
111.
112.
113.
High mobility group 1 (HMG1) protein is an abundant and conserved component of vertebrate nuclei and has been proposed to play a structural role in chromatin organization, possibly similar to that of histone H1. However, a high abundance of HMG1 had also been reported in the cytoplasm and on the surface of mammalian cells. We conclusively show that HMG1 is a nuclear protein, since several different anti-HMG1 antibodies stain the nucleoplasm of cultured cells, and epitope-tagged HMG1 is localized in the nucleus only. The protein is excluded from nucleoli and is not associated to specific nuclear structures but rather appears to be uniformly distributed. HMG1 can bind in vitro to reconstituted core nucleosomes but is not stably associated to chromatin in live cells. At metaphase, HMG1 is detached from condensed chromosomes, contrary to histone H1. During interphase, HMG1 readily diffuses out of nuclei after permeabilization of the nuclear membranes with detergents, whereas histone H1 remains associated to chromatin. These properties exclude a shared function for HMG1 and H1 in differentiated cells, in spite of their similar biochemical properties. HMG1 may be stably associated only to a very minor population of nucleosomes or may interact transiently with nucleosomes during dynamic processes of chromatin remodeling.  相似文献   
114.
Many assays aimed to test the inhibitory effects of synthetic molecules, and naturally occurring products on the neuraminidase activity exploit the hydrolysis of 2'-O-(4-methylumbelliferyl)-N-acetylneuraminic acid (4-MUNANA). The amount of the released product, 4-methylumbelliferone (4-MU), is then measured fluorimetrically. The authors attempted an analysis of the inhibitory properties of 35 naturally occurring flavonoids on neuraminidase N3, where only 29 of them were sufficiently soluble in the assay medium. During the analysis, the authors noticed a strong quenching effect due to the test compounds on the fluorescence of 4-MU. The quenching constants for the flavonoids were determined according to the Stern-Volmer approach. The extent of fluorescence reduction due to quenching and the magnitude of the fluorescence reduction measured in the inhibition assays were comparable: for 11 of 29 compounds, the two values were found to be coincident within the experimental uncertainty. These data were statistically analyzed for correlation by calculating the pertinent Pearson correlation coefficient. Inhibition and quenching were found to be positively correlated (r = 0.71, p(uncorr) = 1.5 × 10(-5)), and the correlation was maintained for the whole set of tested compounds. Altogether, the collected data imply that all of the tested flavonoids could produce false-positive results in the neuraminidase inhibition assay using 4-MUNANA as a substrate.  相似文献   
115.
Body size is an important trait linking pollinators and plants. Morphological matching between pollinators and plants is thought to reinforce pollinator fidelity, as the correct fit ensures that both parties benefit from the interaction. We investigated the influence of body size in a specialized pollination system (buzz‐pollination) where bees vibrate flowers to release pollen concealed within poricidal stamens. Specifically, we explored how body size influences the frequency of buzz‐pollination vibrations. Body size is expected to affect frequency as a result of the physical constraints it places on the indirect flight muscles that control the production of floral vibrations. Larger insects beat their wings less rapidly than smaller‐bodied insects when flying, but whether similar scaling relationships exist with floral vibrations has not been widely explored. This is important because the amount of pollen ejected is determined by the frequency of the vibration and the displacement of a bee's thorax. We conducted a field study in three ecogeographic regions (alpine, desert, grassland) and recorded flight and floral vibrations from freely foraging bees from 27 species across four families. We found that floral vibration frequencies were significantly higher than flight frequencies, but never exceeded 400 Hz. Also, only flight frequencies were negatively correlated with body size. As a bee's size increased, its buzz ratio (floral frequency/flight frequency) increased such that only the largest bees were capable of generating floral vibration frequencies that exceeded double that of their flight vibrations. These results indicate size affects the capacity of bees to raise floral vibration frequencies substantially above flight frequencies. This may put smaller bees at a competitive disadvantage because even at the maximum floral vibration frequency of 400 Hz, their inability to achieve comparable thoracic displacements as larger bees would result in generating vibrations with lower amplitudes, and thus less total pollen ejected for the same foraging effort.  相似文献   
116.
Expansion microscopy is a super‐resolution method that allows expanding uniformly biological samples, by increasing the relative distances among fluorescent molecules labeling specific components. One of the main concerns in this approach regards the isotropic behavior at the nanoscale. The present study aims to determine the robustness of such a technique, quantifying the expansion parameters i.e. scale factor, isotropy, uniformity. Our focus is on the nuclear pore complex (NPC), as well‐known nanoscale component endowed of a preserved and symmetrical structure localized on the nuclear envelope. Here, we show that Nup153 is a good reporter to quantitatively address the isotropy of the expansion process. The quantitative analysis carried out on NPCs, at different spatial scales, allows concluding that expansion microscopy can be used at the nanoscale to measure subcellular features with an accuracy from 10 to 5 nm. Therefore, it is an excellent method for structural studies of macromolecular complexes.  相似文献   
117.
Changes in the soil microbial community structure can lead to dramatic changes in the soil ecosystem. Temperature, which is projected to increase with climate change, is commonly assumed to affect microbial communities, but its effects on agricultural soils are not fully understood. We collected soil samples from six vineyards characterised by a difference of about 2 °C in daily soil temperature over the year and simulated in a microcosm experiment different temperature regimes over a period of 1 year: seasonal fluctuations in soil temperature based on the average daily soil temperature measured in the field; soil temperature warming (2 °C above the normal seasonal temperatures); and constant temperatures normally registered in these temperate soils in winter (3 °C) and in summer (20 °C). Changes in the soil bacterial and fungal community structures were analysed by automated ribosomal intergenic spacer analysis (ARISA). We did not find any effect of warming on soil bacterial and fungal communities, while stable temperatures affected the fungal more than the bacterial communities, although this effect was soil dependent. The soil bacterial community exhibited soil-dependent seasonal fluctuations, while the fungal community was mainly stable. Each soil harbours different microbial communities that respond differently to seasonal temperature fluctuations; therefore, any generalization regarding the effect of climate change on soil communities should be made carefully.  相似文献   
118.
119.
120.
The aim of this study was to evaluate the impact that 6‐O‐(3″, 4″‐di‐Otrans‐cinnamoyl)‐α‐ l ‐rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT‐29, and MCF‐7 cells. Dicinn induced cell‐cycle arrest at the G0/G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time‐dependent ROS generating effects in tumor cells (1‐24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF‐10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号