首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4417篇
  免费   367篇
  2023年   32篇
  2022年   68篇
  2021年   129篇
  2020年   81篇
  2019年   103篇
  2018年   145篇
  2017年   111篇
  2016年   185篇
  2015年   273篇
  2014年   242篇
  2013年   335篇
  2012年   390篇
  2011年   383篇
  2010年   190篇
  2009年   176篇
  2008年   241篇
  2007年   236篇
  2006年   210篇
  2005年   177篇
  2004年   165篇
  2003年   154篇
  2002年   157篇
  2001年   62篇
  2000年   36篇
  1999年   46篇
  1998年   40篇
  1997年   35篇
  1996年   30篇
  1995年   19篇
  1994年   16篇
  1993年   12篇
  1992年   17篇
  1991年   24篇
  1990年   22篇
  1989年   9篇
  1988年   11篇
  1987年   16篇
  1986年   10篇
  1985年   18篇
  1984年   17篇
  1983年   17篇
  1982年   13篇
  1981年   12篇
  1979年   12篇
  1975年   9篇
  1974年   13篇
  1973年   11篇
  1970年   7篇
  1968年   10篇
  1966年   7篇
排序方式: 共有4784条查询结果,搜索用时 125 毫秒
181.
A novel type of lipid droplet/lipoprotein (LD/LP) particle from Thermoplasma acidophilum has been identified recently, and based on biochemical evidences, it was named Thermoplasma Quinone Droplet (TaQD). The major components of TaQDs are menaquinones, and to some extent polar lipids, and the 153 amino acid long Ta0547 vitellogenin‐N domain protein. In this paper, the aim is to identify TaQD proteome components with 1D‐SDS‐PAGE/LC–MS/MS and cross reference them with Edman degradation. TaQD samples isolated with three different purification methods—column chromatography, immunoprecipitation, and LD ultracentrifugation—are analyzed. Proteins Ta0093, Ta0182, Ta0337, Ta0437, Ta0438, Ta0547, and Ta1223a are identified as constituents of the TaQD proteome. The majority of these proteins is uncharacterized and has low molecular weight, and none of them is predicted to take part in lipid metabolism. Bioinformatics analyses does not predict any interaction between these proteins, however, there are indications of interactions with proteins taking part in lipid metabolism. Whether if TaQDs provide platform for lipid metabolism and the interactions between TaQD proteins and lipid metabolism proteins occur in the reality remain for further studies.  相似文献   
182.
183.
The complete or partial loss of shattering ability occurred independently during the domestication of several crops. Therefore, the study of this trait can provide an understanding of the link between phenotypic and molecular convergent evolution. The genetic dissection of ‘pod shattering’ in Phaseolus vulgaris is achieved here using a population of introgression lines and next‐generation sequencing techniques. The ‘occurrence’ of the indehiscent phenotype (indehiscent versus dehiscent) depends on a major locus on chromosome 5. Furthermore, at least two additional genes are associated with the ‘level’ of shattering (number of shattering pods per plant: low versus high) and the ‘mode’ of shattering (non‐twisting versus twisting pods), with all of these loci contributing to the phenotype by epistatic interactions. Comparative mapping indicates that the major gene identified on common bean chromosome 5 corresponds to one of the four quantitative trait loci for pod shattering in Vigna unguiculata. None of the loci identified comprised genes that are homologs of the known shattering genes in Glycine max. Therefore, although convergent domestication can be determined by mutations at orthologous loci, this was only partially true for P. vulgaris and V. unguiculata, which are two phylogenetically closely related crop species, and this was not the case for the more distant P. vulgaris and G. max. Conversely, comparative mapping suggests that the convergent evolution of the indehiscent phenotype arose through mutations in different genes from the same underlying gene networks that are involved in secondary cell‐wall biosynthesis and lignin deposition patterning at the pod level.  相似文献   
184.
185.
Expansion microscopy is a super‐resolution method that allows expanding uniformly biological samples, by increasing the relative distances among fluorescent molecules labeling specific components. One of the main concerns in this approach regards the isotropic behavior at the nanoscale. The present study aims to determine the robustness of such a technique, quantifying the expansion parameters i.e. scale factor, isotropy, uniformity. Our focus is on the nuclear pore complex (NPC), as well‐known nanoscale component endowed of a preserved and symmetrical structure localized on the nuclear envelope. Here, we show that Nup153 is a good reporter to quantitatively address the isotropy of the expansion process. The quantitative analysis carried out on NPCs, at different spatial scales, allows concluding that expansion microscopy can be used at the nanoscale to measure subcellular features with an accuracy from 10 to 5 nm. Therefore, it is an excellent method for structural studies of macromolecular complexes.  相似文献   
186.
Alternative reproductive tactics (ARTs), discrete phenotypic variations evolved to maximize fitness, may entail different cost‐benefit trade‐offs. In large mammals, differences in costs associated with ARTs—including energy expenditure and parasite infection—are typically greatest during the breeding season. Nonetheless, physiological and behavioral differences between ARTs can manifest throughout the year, possibly involving costs that may contribute to maintain ARTs within populations. Using the number of nematode larvae per gram of feces (LPG) as a proxy, we explored the temporal changes in lung parasite infection in territorial and nonterritorial male chamois Rupicapra in the Gran Paradiso National Park (Italy), between 2011 and 2012. We aimed to identify which tactic‐specific physiological and behavioral features (including age, hormonal levels, inter‐ and intrasexual interactions, and space use) or climatic factors (temperature and precipitation) best explained yearly variation in parasite infection within and between ARTs. Generalized additive mixed models showed that the fecal larval counts of lung nematodes underwent strong temporal changes in both male types. Differences between ARTs (with higher LPG values in territorial than nonterritorial males) were greatest during the rut and—to a lesser extent—in spring, respectively, at the peak and at the onset of territoriality. The difference in LPG between tactics was largely explained by the greater levels of hormone metabolites in territorial males during the rut. The other variables did not contribute significantly to explain the different shedding of larvae within and between ARTs. Our analysis suggests that different values of LPG between territorial and nonterritorial males are largely a result of tactic‐specific differences in the secretion of hormone metabolites, but only during the rut. To clarify whether rut‐related parasitism contributes to the maintenance of ARTs, tactic‐specific life history trade‐offs, for example, between reproduction and parasite‐related mortality, must be investigated.  相似文献   
187.
Body size is an important trait linking pollinators and plants. Morphological matching between pollinators and plants is thought to reinforce pollinator fidelity, as the correct fit ensures that both parties benefit from the interaction. We investigated the influence of body size in a specialized pollination system (buzz‐pollination) where bees vibrate flowers to release pollen concealed within poricidal stamens. Specifically, we explored how body size influences the frequency of buzz‐pollination vibrations. Body size is expected to affect frequency as a result of the physical constraints it places on the indirect flight muscles that control the production of floral vibrations. Larger insects beat their wings less rapidly than smaller‐bodied insects when flying, but whether similar scaling relationships exist with floral vibrations has not been widely explored. This is important because the amount of pollen ejected is determined by the frequency of the vibration and the displacement of a bee's thorax. We conducted a field study in three ecogeographic regions (alpine, desert, grassland) and recorded flight and floral vibrations from freely foraging bees from 27 species across four families. We found that floral vibration frequencies were significantly higher than flight frequencies, but never exceeded 400 Hz. Also, only flight frequencies were negatively correlated with body size. As a bee's size increased, its buzz ratio (floral frequency/flight frequency) increased such that only the largest bees were capable of generating floral vibration frequencies that exceeded double that of their flight vibrations. These results indicate size affects the capacity of bees to raise floral vibration frequencies substantially above flight frequencies. This may put smaller bees at a competitive disadvantage because even at the maximum floral vibration frequency of 400 Hz, their inability to achieve comparable thoracic displacements as larger bees would result in generating vibrations with lower amplitudes, and thus less total pollen ejected for the same foraging effort.  相似文献   
188.
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of a covalent enzyme-DNA intermediate, which is reversibly stabilized by the anticancer agent camptothecin (CPT). Crystallographic studies of the 70-kDa C terminus of human Top1p bound to duplex DNA describe a monomeric protein clamp circumscribing the DNA helix. The structures, which lack the N-terminal domain, comprise the conserved clamp, an extended linker domain, and the conserved C-terminal active site Tyr domain. CPT bound to the covalent Top1p-DNA complex limits linker flexibility, allowing structural determination of this domain. We previously reported that mutation of Ala(653) to Pro in the linker increases the rate of enzyme-catalyzed DNA religation, thereby rendering Top1A653Pp resistant to CPT (Fiorani, P., Bruselles, A., Falconi, M., Chillemi, G., Desideri, A., and Benedetti P. (2003) J. Biol. Chem. 278, 43268-43275). Molecular dynamics studies suggested mutation-induced increases in linker flexibility alter Top1p catalyzed DNA religation. To address the functional consequences of linker flexibility on enzyme catalysis and drug sensitivity, we investigated the interactions of the A653P linker mutation with a self-poisoning T718A mutation within the active site of Top1p. The A653P mutation suppressed the lethal phenotype of Top1T718Ap in yeast, yet did not restore enzyme sensitivity to CPT. However, the specific activity of the double mutant was decreased in vivo and in vitro, consistent with a decrease in DNA binding. These findings support a model where changes in the flexibility or orientation of the linker alter the geometry of the active site and thereby the kinetics of DNA cleavage/religation catalyzed by Top1p.  相似文献   
189.
In this work we analyzed the photosynthetic apparatus in Arabidopsis thaliana plants acclimated to different light intensity and temperature conditions. Plants showed the ability to acclimate into different environments and avoid photoinhibition. When grown in high light, plants had a faster activation rate for energy dissipation (qE). This ability was correlated to higher accumulation levels of a specific photosystem II subunit, PsbS. The photosystem II antenna size was also regulated according to light exposure; smaller antenna size was observed in high light-acclimated plants with respect to low light plants. Different antenna polypeptides did not behave similarly, and Lhcb1, Lchb2, and Lhcb6 (CP24) are shown to undergo major levels of regulation, whereas Lhcb4 and Lhcb5 (CP29 and CP26) maintained their stoichiometry with respect to the reaction center in all growth conditions. The effect of acclimation on photosystem I antenna was different; in fact, the stoichiometry of any Lhca antenna proteins with respect to photosystem I core complex was not affected by growth conditions. Despite this stability in antenna stoichiometry, photosystem I light harvesting function was shown to be regulated through different mechanisms like the control of photosystem I to photosystem II ratio and the association or dissociation of Lhcb polypeptides to photosystem I.  相似文献   
190.
Mitochondria participate in key metabolic reactions of the cell and regulate crucial signaling pathways including apoptosis. Although several approaches are available to study mitochondrial function in situ are available, investigating functional mitochondria that have been isolated from different tissues and from cultured cells offers still more unmatched advantages. This protocol illustrates a step-by-step procedure to obtain functional mitochondria with high yield from cells grown in culture, liver and muscle. The isolation procedures described here require 1-2 hours, depending on the source of the organelles. The polarographic analysis can be completed in 1 hour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号