首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4471篇
  免费   371篇
  4842篇
  2023年   38篇
  2022年   84篇
  2021年   129篇
  2020年   81篇
  2019年   103篇
  2018年   145篇
  2017年   111篇
  2016年   187篇
  2015年   273篇
  2014年   242篇
  2013年   335篇
  2012年   389篇
  2011年   383篇
  2010年   191篇
  2009年   178篇
  2008年   241篇
  2007年   236篇
  2006年   211篇
  2005年   179篇
  2004年   166篇
  2003年   154篇
  2002年   158篇
  2001年   63篇
  2000年   36篇
  1999年   46篇
  1998年   41篇
  1997年   35篇
  1996年   30篇
  1995年   19篇
  1994年   16篇
  1993年   12篇
  1992年   17篇
  1991年   24篇
  1990年   22篇
  1989年   9篇
  1988年   11篇
  1987年   17篇
  1986年   10篇
  1985年   18篇
  1984年   18篇
  1983年   21篇
  1982年   13篇
  1981年   12篇
  1979年   12篇
  1976年   10篇
  1975年   11篇
  1974年   15篇
  1973年   14篇
  1971年   9篇
  1968年   9篇
排序方式: 共有4842条查询结果,搜索用时 15 毫秒
51.
52.
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. The clinical outcome for osteosarcoma remains discouraging despite aggressive surgery and intensive radiotherapy and chemotherapy regimens. Thus, novel therapeutic approaches are needed. Previously, we have shown that inorganic phosphate (Pi) inhibits proliferation and aggressiveness of human osteosarcoma U2OS cells identifying adenylate cyclase, beta3 integrin, Rap1, ERK1/2 as proteins whose expression and function are relevantly affected in response to Pi. In this study, we investigated whether Pi could affect chemosensitivity of osteosarcoma cells and the underlying molecular mechanisms. Here, we report that Pi inhibits proliferation of p53‐wild type U2OS cells (and not of p53‐null Saos and p53‐mutant MG63 cells) by slowing‐down cell cycle progression, without apoptosis occurrence. Interestingly, we found that Pi strongly enhances doxorubicin‐induced cytotoxicity in U2OS, and not in Saos and MG63 cells, by apoptosis induction, as revealed by a marked increase of sub‐G1 population, Bcl‐2 downregulation, caspase‐3 activation, and PARP cleavage. Remarkably, Pi/doxorubicin combination‐induced cytotoxicity was accompanied by an increase of p53 protein levels and of p53 target genes mdm2, p21 and Bax, and was significantly reduced by the p53 inhibitor pifithrine‐alpha. Moreover, the doxorubicin‐induced cytotoxicity was associated with ERK1/2 pathway inhibition in response to Pi. Altogether, our data enforce the evidence of Pi as a novel signaling molecule capable of inhibiting ERK pathway and inducing sensitization to doxorubicin of osteosarcoma cells by p53‐dependent apoptosis, implying that targeting Pi levels might represent a rational strategy for improving osteosarcoma therapy. J. Cell. Physiol. 228: 198–206, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
53.
CHF5074, a new microglial modulator, attenuates memory deficit in Alzheimer's disease transgenic mice. In this study, the effect of an acute or subacute CHF5074 treatment on in vivo novel object recognition test and on [3H]Acetylcholine (ACh) and GABA release in pre‐plaque (7‐month‐old) Tg2576 mice have been compared with those induced by the γ‐secretase inhibitor LY450139 (semagacestat). Vehicle‐treated Tg2576 mice displayed an impairment of recognition memory compared with wild‐type animals. This impairment was recovered in transgenic animals acutely treated with CHF5074 (30 mg/kg), while LY450139 (1, 3, 10 mg/kg) was ineffective. In frontal cortex synaptosomes from vehicle‐treated Tg2576 mice, K+‐evoked [3H]ACh release was lower than that measured in wild‐type mice. This reduction was absent in transgenic animals subacutely treated with CHF5074 (30 mg/kg daily for 8 days), while it was slightly, not significantly, amplified by LY450139 (3 mg/kg daily for 8 days). There were no differences between the groups on spontaneous [3H]ACh release as well as spontaneous and K+‐evoked GABA release. These results suggest that CHF5074 has beneficial effects on visual memory and cortical cholinergic dysfunctions in pre‐plaque Tg2576 mice. Together with previous findings, these data suggest that CHF5074 could be a possible candidate for early Alzheimer's disease therapeutic regimens.  相似文献   
54.
Populations of Drosophila melanogaster face significant mortality risks from parasitoid wasps that use species‐specific strategies to locate and survive in hosts. We tested the hypothesis that parasitoids with different strategies select for alternative host defense characteristics and in doing so contribute to the maintenance of fitness variation and produce trade‐offs among traits. We characterized defense traits of Drosophila when exposed to parasitoids with different host searching behaviors (Aphaereta sp. and Leptopilina boulardi). We used host larvae with different natural alleles of the gene Dopa decarboxylase (Ddc), a gene controlling the production of dopamine and known to influence the immune response against parasitoids. Previous population genetic analyses indicate that our focal alleles are maintained by balancing selection. Genotypes exhibited a trade‐off between the immune response against Aphaereta sp. and the ability to avoid parasitism by L. boulardi. We also identified a trade‐off between the ability to avoid parasitism by L. boulardi and larval competitive ability as indicated by differences in foraging and feeding behavior. Genotypes differed in dopamine levels potentially explaining variation in these traits. Our results highlight the potential role of parasitoid biodiversity on host fitness variation and implicate Ddc as an antagonistic pleiotropic locus influencing larval fitness traits.  相似文献   
55.
The α-carbonic anhydrase (CA, EC 4.2.1.1) from the extremophilic bacterium Sulfurihydrogenibium azorense (SazCA) was recently shown to be the fastest CA known. Here we investigated this enzyme for its activation with a series of amino acids and amines. The best SazCA activators were d-Phe, l-DOPA, l- and d-Trp, dopamine and serotonin, which showed activation constants in the range of 3–23 nM. l- and d-His, l-Phe, l-Tyr, 2-pyridyl-methylamine and L-adrenaline were also effective activators (KAs in the range of 62–90 nM), whereas d-Dopa, d-Tyr and several heterocyclic amines showed activity in the micromolar range. The good thermal stability, robustness, very high catalytic activity and propensity to be activated by simple amino acids and amines, make SazCA a very interesting candidate for biomimetic CO2 capture processes.  相似文献   
56.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the γ-class are present in archaea, bacteria and plants but, except the Methanosarcina thermophila enzymes CAM and CAMH, they were poorly characterized so far. Here we report a new such enzyme (PgiCA), the γ-CA from the oral cavity pathogenic bacterium Porphyromonas gingivalis, the main causative agent of periodontitis. PgiCA showed a good catalytic activity for the CO2 hydration reaction, comparable to that of the human (h) isoform hCA I. Inorganic anions such as thiocyanate, cyanide, azide, hydrogen sulfide, sulfamate and trithiocarbonate were effective PgiCA inhibitors with inhibition constants in the range of 41–97 μM. Other effective inhibitors were diethyldithiocarbamate, sulfamide, and phenylboronic acid, with KIs of 4.0–9.8 μM. The role of this enzyme as a possible virulence factor of P. gingivalis is poorly understood at the moment but its good catalytic activity and the possibility to be inhibited by a large number of compounds may lead to interesting developments in the field.  相似文献   
57.
Nucleophosmin (NPM1) is an abundant, ubiquitously expressed protein mainly localized at nucleoli but continuously shuttling between nucleus and cytoplasm. NPM1 plays a role in several cellular functions, including ribosome biogenesis and export, centrosome duplication, chromatin remodeling, DNA repair, and response to stress stimuli. Much of the interest in this protein arises from its relevance in human malignancies. NPM1 is frequently overexpressed in solid tumors and is the target of several chromosomal translocations in hematologic neoplasms. Notably, NPM1 has been characterized as the most frequently mutated gene in acute myeloid leukemia (AML). Mutations alter the C‐terminal DNA‐binding domain of the protein and result in its aberrant nuclear export and stable cytosolic localization. In this review, we focus on the leukemia‐associated NPM1 C‐terminal domain and describe its structure, function, and the effect exerted by leukemic mutations. Finally, we discuss the possibility to target NPM1 for the treatment of cancer and, in particular, of AML patients with mutated NPM1 gene.  相似文献   
58.
Next generation sequencing of pooled samples is an effective approach for studies of variability and differentiation in populations. In this paper we provide a comprehensive set of estimators of the most common statistics in population genetics based on the frequency spectrum, namely the Watterson estimator , nucleotide pairwise diversity Π, Tajima's D, Fu and Li's D and F, Fay and Wu's H, McDonald‐Kreitman and HKA tests and , corrected for sequencing errors and ascertainment bias. In a simulation study, we show that pool and individual θ estimates are highly correlated and discuss how the performance of the statistics vary with read depth and sample size in different evolutionary scenarios. As an application, we reanalyse sequences from Drosophila mauritiana and from an evolution experiment in Drosophila melanogaster. These methods are useful for population genetic projects with limited budget, study of communities of individuals that are hard to isolate, or autopolyploid species.  相似文献   
59.
A convenient synthetic route and the characterization of complexes trans-[PtCl2(L)(PPh3)] (L = Et2NH (2), (PhCH2)2NH (3), (HOCH2CH2)2NH) (4) are reported. The antiproliferative activity was evaluated on three human tumor cell lines. The investigation on the mechanism of action highlighted for the most active complex 4 the capacity to affect mitochondrial functions. In particular, both the induction of the mitochondrial permeability transition phenomenon and an aspecific membrane damage occurred, depending on concentration.  相似文献   
60.
The use of plants to reclaim contaminated soils and groundwater, known as phytoremediation, is a promising biotechnological strategy which has gained a lot of attention in the last few years. Plants have evolved sophisticated detoxification systems against the toxin chemicals: following the uptake, the compounds are activated so that certain functional groups can conjugate hydrophilic molecules, such as thiols. The resulting conjugates are recognized by the tonoplast transporters and sequestered into the vacuoles. The xenobiotic conjugation with glutathione is mediated by enzymes which belong to the superfamily of glutathione S-transferases (GSTs) catalyzing the nucleophylic attack of the sulphur of glutathione on the electrophilic groups of the cytotoxic substrates therefore playing a crucial role in their degradation. This study was designed to identify the putative correlation between structural and functional characteristics of plant GST classes belonging to different plant species. Consequently, the protein sequences of the expressed GSTs have been retrieved from UniGene, classified and then analyzed in order to assess the evolutionary trend and to predict secondary structure. Moreover, the fingerprint analysis was performed with SCAN Prosite in the attempt to correlate meaningful signature profile and biological information. The results evidenced that all the soluble GSTs have a tendency to assume the α-helix secondary structure followed by random coil and β-sheet. The fingerprint analysis revealed that specific signature profiles related mainly to protein phosphorylation are in the GST classes of all considered species thus suggesting that they might be subjected to reversible activation by phosphorylation-mediated regulation. This approach provides the knowledge of the relationship between presence of conserved signature profile and biological function in the view of future selection of GSTs which might be employed in either mutagenesis or genetic engineering studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号