首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4509篇
  免费   367篇
  国内免费   1篇
  4877篇
  2023年   38篇
  2022年   83篇
  2021年   129篇
  2020年   81篇
  2019年   103篇
  2018年   145篇
  2017年   111篇
  2016年   185篇
  2015年   273篇
  2014年   242篇
  2013年   340篇
  2012年   390篇
  2011年   385篇
  2010年   192篇
  2009年   176篇
  2008年   242篇
  2007年   239篇
  2006年   215篇
  2005年   178篇
  2004年   165篇
  2003年   158篇
  2002年   161篇
  2001年   62篇
  2000年   36篇
  1999年   47篇
  1998年   42篇
  1997年   37篇
  1996年   33篇
  1995年   22篇
  1994年   17篇
  1993年   14篇
  1992年   19篇
  1991年   24篇
  1990年   22篇
  1989年   10篇
  1988年   12篇
  1987年   17篇
  1986年   14篇
  1985年   20篇
  1984年   22篇
  1983年   18篇
  1982年   16篇
  1981年   13篇
  1979年   15篇
  1977年   8篇
  1976年   9篇
  1975年   9篇
  1974年   13篇
  1973年   11篇
  1968年   9篇
排序方式: 共有4877条查询结果,搜索用时 15 毫秒
181.
Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.  相似文献   
182.
Journal of Insect Conservation - Invasive alien species could generate a multitude of impacts towards native species. The introduction and spread of Vespa velutina in Europe is raising concern for...  相似文献   
183.
Uterine leiom yomas are benign tumors highly prevalent in reproductive women. In thecurrent study, initially, we aimed to screen five different strawberry cultivars (Alba, Clery, Portola, Tecla, and Romina) to identify efficient cultivars in terms of phytochemical characterization and biological properties by measuring phenolic and anthocyanin content as well as antioxidant capacity, and by measuring apoptotic rate and reactive oxygen species (ROS) production in uterine leiomyoma cells. Next, we focused on the most efficient ones, cultivar Alba (A) and Romina (R) as well as Romina anthocyanin (RA) fraction for their ability to regulate oxidative phosphorylation (oxygen consumption rate [OCR]) glycolysis (extracellular acidification rate [ECAR]), and also fibrosis. Leiomyoma and myometrial cells were treated with a methanolic extract of A and R (250 μg/ml) or with RA (50 μg/ml) for 48 hr to measure OCR and ECAR, as well as gene expression associated with fibrosis. In the leiomyoma cells, RA was more effective in inducing apoptosis and increasing intracellular ROS levels, followed by R and A. In myometrial cells, all strawberry treatments increased the cellular viability and decreased ROS concentrations. Leiomyoma cells showed also a significant decrease in ECAR, especially after RA treatment, while OCR was slightly increased in both myometrial and leiomyoma cells. R and RA treatment significantly decreased collagen 1A1, fibronectin, versican, and activin A messenger RNA expression in leiomyoma cells. In conclusion, this study suggests that Romina, or its anthocyanin fraction, can be developed as a therapeutic and/or preventive agent for uterine leiomyomas, confirming the healthy effects exerted by these fruits and their bioactive compounds.  相似文献   
184.
185.
Zeh  Lilli  Limpens  Juul  Erhagen  Björn  Bragazza  Luca  Kalbitz  Karsten 《Plant and Soil》2019,439(1-2):19-30
Plant and Soil - During historical yield improvement in soybean, breeders have seldom considered selection for root traits, generally focusing selection on yield traits. Yet, it is not known how...  相似文献   
186.
Impaired angiogenesis leads to long-term complications and is a major contributor of the high morbidity in patients with Diabetes Mellitus (DM). Methylglyoxal (MGO) is a glycolysis byproduct that accumulates in DM and is detoxified by the Glyoxalase 1 (Glo1). Several studies suggest that MGO contributes to vascular complications through mechanisms that remain to be elucidated. In this study we have clarified for the first time the molecular mechanism involved in the impairment of angiogenesis induced by MGO accumulation.Angiogenesis was evaluated in mouse aortic endothelial cells isolated from Glo1-knockdown mice (Glo1KD MAECs) and their wild-type littermates (WT MAECs). Reduction in Glo1 expression led to an accumulation of MGO and MGO-modified proteins and impaired angiogenesis of Glo1KD MAECs. Both mRNA and protein levels of the anti-angiogenic HoxA5 gene were increased in Glo1KD MAECs and its silencing improved both their migration and invasion. Nuclear NF-?B-p65 was increased 2.5-fold in the Glo1KD as compared to WT MAECs. Interestingly, NF-?B-p65 binding to HoxA5 promoter was also 2-fold higher in Glo1KD MAECs and positively regulated HoxA5 expression in MAECs. Consistent with these data, both the exposure to a chemical inhibitor of Glo1 “SpBrBzGSHCp2” (GI) and to exogenous MGO led to the impairment of migration and the increase of HoxA5 mRNA and NF-?B-p65 protein levels in microvascular mouse coronary endothelial cells (MCECs).This study demonstrates, for the first time, that MGO accumulation increases the antiangiogenic factor HoxA5 via NF-?B-p65, thereby impairing the angiogenic ability of endothelial cells.  相似文献   
187.
Myosin filament–based regulation supplements actin filament–based regulation to control the strength and speed of contraction in heart muscle. In diastole, myosin motors form a folded helical array that inhibits actin interaction; during contraction, they are released from that array. A similar structural transition has been observed in mammalian skeletal muscle, in which cooling below physiological temperature has been shown to reproduce some of the structural features of the activation of myosin filaments during active contraction. Here, we used small-angle x-ray diffraction to characterize the structural changes in the myosin filaments associated with cooling of resting and relaxed trabeculae from the right ventricle of rat hearts from 39°C to 7°C. In intact quiescent trabeculae, cooling disrupted the folded helical conformation of the myosin motors and induced extension of the filament backbone, as observed in the transition from diastole to peak systolic force at 27°C. Demembranation of trabeculae in relaxing conditions induced expansion of the filament lattice, but the structure of the myosin filaments was mostly preserved at 39°C. Cooling of relaxed demembranated trabeculae induced changes in motor conformation and filament structure similar to those observed in intact quiescent trabeculae. Osmotic compression of the filament lattice to restore its spacing to that of intact trabeculae at 39°C stabilized the helical folded state against disruption by cooling. The myosin filament structure and motor conformation of intact trabeculae at 39°C were largely preserved in demembranated trabeculae at 27°C or above in the presence of Dextran, allowing the physiological mechanisms of myosin filament–based regulation to be studied in those conditions.  相似文献   
188.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   
189.
190.
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age‐related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First‐degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top‐ranked senescence‐related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3‐overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号