首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4435篇
  免费   365篇
  4800篇
  2023年   38篇
  2022年   83篇
  2021年   129篇
  2020年   81篇
  2019年   103篇
  2018年   145篇
  2017年   111篇
  2016年   185篇
  2015年   273篇
  2014年   242篇
  2013年   335篇
  2012年   389篇
  2011年   383篇
  2010年   190篇
  2009年   176篇
  2008年   241篇
  2007年   236篇
  2006年   210篇
  2005年   177篇
  2004年   165篇
  2003年   154篇
  2002年   157篇
  2001年   61篇
  2000年   35篇
  1999年   46篇
  1998年   40篇
  1997年   35篇
  1996年   30篇
  1995年   19篇
  1994年   16篇
  1993年   12篇
  1992年   17篇
  1991年   22篇
  1990年   22篇
  1989年   9篇
  1988年   11篇
  1987年   16篇
  1986年   10篇
  1985年   18篇
  1984年   17篇
  1983年   17篇
  1982年   13篇
  1981年   12篇
  1979年   12篇
  1975年   9篇
  1974年   13篇
  1973年   11篇
  1971年   7篇
  1968年   9篇
  1966年   7篇
排序方式: 共有4800条查询结果,搜索用时 15 毫秒
31.
32.
Dr. Luca Martire 《Facies》1996,35(1):209-236
Summary The red, pelagic limestones of the Rosso Ammonitico Veronese (Upper Bajocian-Tithonian) of the Altopiano di Asiago area can be subdivided into eight facies. They differ from each other in structure (bedding style, presence and type of nodularity) and texture (nature of components, grain-vs mud-support, compactional features). Several discontinuities could be recognized, based on sedimentological or biostratigraphic evidence. In the context of a drowned platform, where sediments essentially consist of skeletal remains of both planktonic and benthic organism, the different facies are interpreted as reflecting a varying influence of currents on the winnowing of micrite and on triggering early cementation. Early cementation in turn, controlled the patterns of bioturbation and the response of sediments to later compaction and pressure-dissolution. At times, microbial mats, of unidentified nature, were important in trapping and binding sediment, giving rise to early lithified nodules and layers of stromatolitic aspect. The Rosso Ammonitico Veronese can be subdivided into three units: lower Rosso Ammonitico (RAI: Upper Bajocian-Lower Callovian), middle Rosso Ammonitico (RAM: Upper Callovian-Middle Oxfordian), and upper Rosso Ammonitico (RAS: Lower Kimmeridgian-Tithonian). Frequent ammonite moulds allow the precise dating of the base and top of each unit, and the documentation of facies heteropies and hiatusses in the more fossiliferous RAS. The lower unit (RAM) is massive and essentially nodular; the middle unit (RAM) is well bedded, non-nodular, and cherty; the upper unit (RAS) is richer in clay and typically nodular. The RAI and the RAS are present everywhere, though significant facies and thickness changes affect particularly the RAS; the RAM is much more variable, ranging from 0 to 10 metres. These variations, that may be gradual or abrupt, are inter-preted as the result of Middle-Late Callovian block-faulting which generated an irregular sea floor topography where the swells were more exposed to currents that continuously removed sediments, inducing long-lasting periods of nondeposition. Sediments preferentially accumulated in the adjacent lows. A confirmation of this hypothesis is provided by evidence of synsedimentary tectonics, described for the first time in the Rosso Ammonitico Veronese. Neptunian dykes, both vertical and horizontal, are developed at the top of the RAI and are filled with laminated sediments or collapse breccias. Glides of metre-size blocks and slumps are present at the top of the RAI and at the base of the RAM, respectively. Cm-thick layers of mud supported breccias are intercalated in the upper part of the RAI and within the RAM: they are interpreted as seismites. All these features document a tensional regime that generated fractures in more or less lithified sediments and failure along steep fault scarps or gently dipping slopes of tilted fault blocks. Recognition of this Callovian-Oxfordian tectonic activity shows that, after the Bajocian drowning, the Trento Plateau did not simply experience a uniform and general foundering: a small-scale block-faulting was still active and affected the pattern of facies distribution.  相似文献   
33.
34.
35.
Deficiency of argininosuccinate lyase (ASL) causes argininosuccinic aciduria, an urea cycle defect that may present with a severe neonatal onset form or with a late onset phenotype. To date phenotype-genotype correlations are still not clear because biochemical assays of ASL activity correlate poorly with clinical severity in patients. We employed a yeast-based functional complementation assay to assess the pathogenicity of 12 missense ASL mutations, to establish genotype-phenotype correlations, and to screen for intragenic complementation. Rather than determining ASL enzyme activity directly, we have measured the growth rate in arginine-free medium of a yeast ASLnull strain transformed with individual mutant ASL alleles. Individual haploid strains were also mated to obtain diploid, “compound heterozygous” yeast. We show that the late onset phenotypes arise in patients because they harbor individual alleles retaining high residual enzymatic activity or because of intragenic complementation among different mutated alleles. In these cases complementation occurs because in the hybrid tetrameric enzyme at least one active site without mutations can be formed or because the differently mutated alleles can stabilize each other, resulting in partial recovery of enzymatic activity. Functional complementation in yeast is simple and reproducible and allows the analysis of large numbers of mutant alleles. Moreover, it can be easily adapted for the analysis of mutations in other genes involved in urea cycle disorders.Argininosuccinic aciduria (ASAuria, MIM 207900)3 is an autosomal recessive disorder of the urea cycle caused by mutations of the ASL gene (hASL, MIM 608310), encoding argininosuccinate lyase (ASL; EC 4.3.2.1.) (1). This enzyme is ubiquitously expressed and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. ASL belongs to a superfamily of hydrolases that includes adenylosuccinate lyase and fumarase, which share a homotetrameric structure and a similar catalytic mechanism. The tetrameric structure of ASL accounts for the phenomenon of intragenic complementation. This particular situation occurs when a multimeric protein is formed from subunits produced by differently mutated alleles of the same gene. On complementation, a partially functional hybrid protein is produced from the two distinct types of mutant subunits, neither of which individually has appreciable enzymatic activity (2).ASL participates to the urea cycle, and in humans it is essential for ammonia detoxification, whereas in lower organisms it is required for the biosynthesis of arginine. Saccharomyces cerevisiae strains harboring a deletion of the homolog of human ASL (ARG4) cannot grow on media lacking arginine (3).ASAuria is characterized by accumulation of argininosuccinic acid (ASA) in body fluids, and severe hyperammonaemia. The disease displays clinical heterogeneity with two main clinical phenotypes: the acute/neonatal onset form, with symptoms rapidly progressing to deep coma, apnea, and death (1), and the subacute/late onset type, which is diagnosed in infancy or childhood (4). Such patients may present simply with mental retardation or an epileptic disorder. In both types the diagnosis is established unambiguously by measuring plasma levels of ammonia (not always elevated in the late onset form), ASA, and its anhydrides by plasma amino acids assay (1). Over 40 mutations of the ASL gene have been reported, both amino acid substitutions and truncating variants, which are scattered throughout the gene (5, 6).We have previously reported the identification of novel mutations of the ASL gene in a cohort of Italian patients (7). In this study we employed a yeast model to validate the pathogenicity of missense ASL mutations found in our cohort, to study the effects of different allelic combinations, and to establish possible genotype-phenotype correlations.  相似文献   
36.
37.
Abstract

Megagametophytes of Macrozamia communis were incubated in White's Basal Medium and in White's Basal Medium modified with 2,4-D and kinetin. On the medium enriched with growth substances, regeneration of coralloid roots was induced. These are morphologically identical to sporophytic coralloid roots, without any endosymbiont and displaying negative geotropism. These results confirm the fact that coralloid roots represent an inherent feature of the root system of the Cycadales rather than being the result of induction by microbial factors. Therefore it is possible to suggest that coralloid roots represent vestigial pneumatophores.  相似文献   
38.
39.
Magi B  Bargagli E  Bini L  Rottoli P 《Proteomics》2006,6(23):6354-6369
The proteomic approach is complementary to genomics and enables protein composition to be investigated under various clinical conditions. Its application to the study of bronchoalveolar lavage (BAL) is extremely promising. BAL proteomic studies were initially based on two-dimensional electrophoretic separation of complex protein samples and subsequent identification of proteins by different methods. With the techniques available today it is possible to attain many different research objectives. BAL proteomics can contribute to the identification of proteins in alveolar spaces with possible insights into pathogenesis and clinical application for diagnosis, prognosis and therapy. Many proteins with different functions have already been identified in BAL. Some could be biomarkers that need to be individually confirmed by correlation with clinical parameters and validation by other methods on larger cohorts of patients. The standardization of BAL sample preparation and processing for proteomic studies is an important goal that would promote and facilitate clinical applications. Here, we review the principal literature on BAL proteomic analysis applied to the study of lung diseases.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号