首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4603篇
  免费   383篇
  4986篇
  2023年   40篇
  2022年   90篇
  2021年   133篇
  2020年   82篇
  2019年   110篇
  2018年   155篇
  2017年   118篇
  2016年   192篇
  2015年   282篇
  2014年   247篇
  2013年   339篇
  2012年   396篇
  2011年   395篇
  2010年   197篇
  2009年   183篇
  2008年   249篇
  2007年   243篇
  2006年   219篇
  2005年   183篇
  2004年   174篇
  2003年   166篇
  2002年   164篇
  2001年   67篇
  2000年   38篇
  1999年   48篇
  1998年   44篇
  1997年   35篇
  1996年   31篇
  1995年   20篇
  1994年   16篇
  1993年   12篇
  1992年   21篇
  1991年   22篇
  1990年   22篇
  1989年   9篇
  1988年   11篇
  1987年   16篇
  1986年   10篇
  1985年   20篇
  1984年   18篇
  1983年   18篇
  1982年   13篇
  1981年   13篇
  1980年   8篇
  1979年   13篇
  1975年   9篇
  1974年   13篇
  1973年   12篇
  1968年   9篇
  1966年   7篇
排序方式: 共有4986条查询结果,搜索用时 13 毫秒
121.
Caveolin‐1 (CAV1) is the principal structural component of caveolae which functions as scaffolding protein for the integration of a variety of signaling pathways. In this study, we investigated the involvement of CAV1 in endothelial cell (EC) functions and show that siRNA‐induced CAV1 silencing in the human EC line EA.hy926 induces distinctive morphological changes, such as a marked increase in cell size and formation of stress fibers. Design‐based stereology was employed in this work to make unbiased quantification of morphometric properties such as volume, length, and surface of CAV1 silenced versus control cells. In addition, we showed that downregulation of CAV1 affects cell cycle progression at G1/S phase transition most likely by perturbation of AKT signaling. With the aim to assess the contribution of CAV1 to typical biological processes of EC, we report here that CAV1 targeting affects cell migration and matrix metalloproteinases (MMPs) activity, and reduces angiogenesis in response to VEGF, in vitro. Taken together our data suggest that the proper expression of CAV1 is important not only for maintaining the appropriate morphology and size of ECs but it might represent a prospective molecular target for studying key biological mechanisms such as senescence and tumorigenesis. J. Cell. Biochem. 114: 1843–1851, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
122.

Background and Aims

Olive tree (Olea europaea L.) is a drought-tolerant tree species cultivated in Mediterranean-type environments. Although it is tolerant to drought, dry conditions decrease its productivity. A thorough analysis of the hydraulic architecture and wood anatomical plasticity, as well as of their physiological significance, is needed to understand how olive trees will adapt to the predicted increase in frequency and severity of drought in the Mediterranean region.

Methods

Dendrochronological, stable isotopic (δ13C, δ18O) and wood anatomical analyses were applied to understand how different water availability can affect wood stem structure and function, in rainfed and irrigated at 100 % of crop evapotranspiration (ETc) olive trees in an experimental orchard close to Benevento (Italy) from 1992 to 2009.

Results

Dendrochronological data indicate that cross-dating and synchronization of ring-width time series in olive tree is possible. After the start of irrigation, significantly more negative δ13C and lower δ18O values were recorded in irrigated trees indicating higher stomatal conductance and transpiration rates. Increased water balance induced the formation of a higher number of vessels with higher diameter.

Conclusions

Water balance variations affected wood anatomy and isotopic composition. Anatomical analyses detected structural and functional adjustments in rainfed trees that produced more vessels with lower diameter to prevent cavitation. Isotopic analyses confirmed that irrigated trees continuously showed enhanced transpiration rates.  相似文献   
123.
124.
125.
The adaptation of translocated organisms to a new environment in the first years after their release is crucial in translocation programs because it may affect survival and reproductive success. Therefore, identifying the factors determining resource selection by the relocated animals is essential to improve the planning and the outcome of such programs. Using data collected in 2006–2009 in the framework of a restocking program, we studied the temporal variation of habitat selection in 14 translocated Alpine ibex (Capra ibex) during the year of their release and the following 3 years. We hypothesized a progressive adaptation of the translocated individuals, highlighted by a gradual decrease in the dissimilarities between translocated and resident individuals in ecological characteristics and social behavior. We tested the differences in habitat selection and home range size between the translocated and resident individuals and compared the spatial overlap between the groups. As expected, the dissimilarities decreased annually. The translocated and resident ibex almost immediately selected the same habitat resources, but the translocated individuals required 3 years to become fully socially assimilated. Our results indicated that habitat selection by gregarious species in a new environment is primarily driven by specific ecological requirements and that sociality plays a significant role. The translocated individuals tended to colonize areas already occupied by residents, either to fulfill social requirements and/or because the location of resident individuals may indicate high-quality habitat. This pattern of behavior must be considered in the planning of translocation programs because habitat selection can affect the outcomes of the programs. © 2013 The Wildlife Society.  相似文献   
126.
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. The clinical outcome for osteosarcoma remains discouraging despite aggressive surgery and intensive radiotherapy and chemotherapy regimens. Thus, novel therapeutic approaches are needed. Previously, we have shown that inorganic phosphate (Pi) inhibits proliferation and aggressiveness of human osteosarcoma U2OS cells identifying adenylate cyclase, beta3 integrin, Rap1, ERK1/2 as proteins whose expression and function are relevantly affected in response to Pi. In this study, we investigated whether Pi could affect chemosensitivity of osteosarcoma cells and the underlying molecular mechanisms. Here, we report that Pi inhibits proliferation of p53‐wild type U2OS cells (and not of p53‐null Saos and p53‐mutant MG63 cells) by slowing‐down cell cycle progression, without apoptosis occurrence. Interestingly, we found that Pi strongly enhances doxorubicin‐induced cytotoxicity in U2OS, and not in Saos and MG63 cells, by apoptosis induction, as revealed by a marked increase of sub‐G1 population, Bcl‐2 downregulation, caspase‐3 activation, and PARP cleavage. Remarkably, Pi/doxorubicin combination‐induced cytotoxicity was accompanied by an increase of p53 protein levels and of p53 target genes mdm2, p21 and Bax, and was significantly reduced by the p53 inhibitor pifithrine‐alpha. Moreover, the doxorubicin‐induced cytotoxicity was associated with ERK1/2 pathway inhibition in response to Pi. Altogether, our data enforce the evidence of Pi as a novel signaling molecule capable of inhibiting ERK pathway and inducing sensitization to doxorubicin of osteosarcoma cells by p53‐dependent apoptosis, implying that targeting Pi levels might represent a rational strategy for improving osteosarcoma therapy. J. Cell. Physiol. 228: 198–206, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
127.
CHF5074, a new microglial modulator, attenuates memory deficit in Alzheimer's disease transgenic mice. In this study, the effect of an acute or subacute CHF5074 treatment on in vivo novel object recognition test and on [3H]Acetylcholine (ACh) and GABA release in pre‐plaque (7‐month‐old) Tg2576 mice have been compared with those induced by the γ‐secretase inhibitor LY450139 (semagacestat). Vehicle‐treated Tg2576 mice displayed an impairment of recognition memory compared with wild‐type animals. This impairment was recovered in transgenic animals acutely treated with CHF5074 (30 mg/kg), while LY450139 (1, 3, 10 mg/kg) was ineffective. In frontal cortex synaptosomes from vehicle‐treated Tg2576 mice, K+‐evoked [3H]ACh release was lower than that measured in wild‐type mice. This reduction was absent in transgenic animals subacutely treated with CHF5074 (30 mg/kg daily for 8 days), while it was slightly, not significantly, amplified by LY450139 (3 mg/kg daily for 8 days). There were no differences between the groups on spontaneous [3H]ACh release as well as spontaneous and K+‐evoked GABA release. These results suggest that CHF5074 has beneficial effects on visual memory and cortical cholinergic dysfunctions in pre‐plaque Tg2576 mice. Together with previous findings, these data suggest that CHF5074 could be a possible candidate for early Alzheimer's disease therapeutic regimens.  相似文献   
128.
Several epidemiological and preclinical studies suggest that non‐steroidal anti‐inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β‐amyloid (Aβ) production and inhibit neuroinflammation. However, follow‐up clinical trials, mostly using selective cyclooxygenase (COX)‐2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX‐1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro‐inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX‐1 inhibition, rather than COX‐2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20‐month‐old triple transgenic AD (3 × Tg‐AD) mice with the COX‐1 selective inhibitor SC‐560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC‐560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg‐AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX‐1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg‐AD mice. Thus, selective COX‐1 inhibition should be further investigated as a potential therapeutic approach for AD.  相似文献   
129.
Eumelanin and pheomelanin are the main endogenous pigments in animals and melanin-based coloration has multiple functions. Melanization is associated with major life-history traits, including immune and stress response, possibly because of pleiotropic effects of genes that control melanogenesis. The net effects on pheo- versus eumelanization and other life-history traits may depend on the antagonistic effects of the genes that trigger the biosynthesis of either melanin form. Covariation between melanin-based pigmentation and fitness traits enforced by pleiotropic genes has major evolutionary implications particularly for socio-sexual communication. However, evidence from non-model organisms in the wild is limited to very few species. Here, we tested the hypothesis that melanin-based coloration of barn swallow (Hirundo rustica) throat and belly feathers covaries with acquired immunity and activation of the hypothalamic–pituitary–adrenal (HPA) axis, as gauged by corticosterone plasma levels. Individuals of both sexes with darker brownish belly feathers had weaker humoral immune response, while darker males had higher circulating corticosterone levels only when parental workload was experimentally reduced. Because color of belly feathers depends on both eu- and pheomelanin, and its darkness decreases with an increase in the concentration of eu- relative to pheomelanin, these results are consistent with our expectation that relatively more eu- than pheomelanized individuals have better immune response and smaller activation of the HPA-axis. Covariation of immune and stress response arose for belly but not throat feather color, suggesting that any function of color as a signal of individual quality or of alternative life-history strategies depends on plumage region.  相似文献   
130.
Populations of Drosophila melanogaster face significant mortality risks from parasitoid wasps that use species‐specific strategies to locate and survive in hosts. We tested the hypothesis that parasitoids with different strategies select for alternative host defense characteristics and in doing so contribute to the maintenance of fitness variation and produce trade‐offs among traits. We characterized defense traits of Drosophila when exposed to parasitoids with different host searching behaviors (Aphaereta sp. and Leptopilina boulardi). We used host larvae with different natural alleles of the gene Dopa decarboxylase (Ddc), a gene controlling the production of dopamine and known to influence the immune response against parasitoids. Previous population genetic analyses indicate that our focal alleles are maintained by balancing selection. Genotypes exhibited a trade‐off between the immune response against Aphaereta sp. and the ability to avoid parasitism by L. boulardi. We also identified a trade‐off between the ability to avoid parasitism by L. boulardi and larval competitive ability as indicated by differences in foraging and feeding behavior. Genotypes differed in dopamine levels potentially explaining variation in these traits. Our results highlight the potential role of parasitoid biodiversity on host fitness variation and implicate Ddc as an antagonistic pleiotropic locus influencing larval fitness traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号