首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   17篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   9篇
  2000年   7篇
  1999年   1篇
  1998年   5篇
  1997年   5篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   3篇
  1967年   1篇
  1958年   1篇
  1950年   1篇
  1947年   1篇
  1946年   1篇
  1945年   1篇
排序方式: 共有106条查询结果,搜索用时 218 毫秒
51.
Many microorganisms encode immune evasion molecules to escape host defenses. Herpes simplex virus type 1 glycoprotein gC is an immunoevasin that inhibits complement activation by binding complement C3b. gC is expressed on the virus envelope and infected cell surface, which makes gC potentially accessible to blocking antibodies. Mice passively immunized with gC monoclonal antibodies prior to infection were protected against herpes simplex virus challenge only if the gC antibodies blocked C3b binding. Mice treated 1 or 2 days postinfection with gC monoclonal antibodies that block C3b binding had less severe disease than control mice treated with nonimmune immunoglobulin G (IgG). Mice immunized with gC protein produced antibodies that blocked C3b binding to gC. Immunized mice were significantly protected against challenge by wild-type virus, but not against a gC mutant virus lacking the C3b binding domain, suggesting that protection was mediated by antibodies that target the gC immune evasion domain. IgG and complement from subjects immunized with an experimental herpes simplex virus glycoprotein gD vaccine neutralized far more mutant virus defective in immune evasion than wild-type virus, supporting the importance of immune evasion molecules in reducing vaccine potency. These results suggest that it is possible to block immune evasion domains on herpes simplex virus and that this approach has therapeutic potential and may enhance vaccine efficacy.  相似文献   
52.
The envelope surface glycoprotein C (gC) of HSV-1 interferes with the complement cascade by binding C3 and activation products C3b, iC3b, and C3c, and by blocking the interaction of C5 and properdin with C3b. Wild-type HSV-1 is resistant to Ab-independent complement neutralization; however, HSV-1 mutant virus lacking gC is highly susceptible to complement resulting in > or =100-fold reduction in virus titer. We evaluated the mechanisms by which complement inhibits HSV-1 gC null virus to better understand how gC protects against complement-mediated neutralization. C8-depleted serum prepared from an HSV-1 and -2 Ab-negative donor neutralized gC null virus comparable to complement-intact serum, indicating that C8 and terminal lytic activity are not required. In contrast, C5-depleted serum from the same donor failed to neutralize gC null virus, supporting a requirement for C5. EDTA-treated serum did not neutralize gC null virus, indicating that complement activation is required. Factor D-depleted and C6-depleted sera neutralized virus, suggesting that the alternative complement pathway and complement components beyond C5 are not required. Complement did not aggregate virus or block attachment to cells. However, complement inhibited infection before early viral gene expression, indicating that complement affects one or more of the following steps in virus replication: virus entry, uncoating, DNA transport to the nucleus, or immediate early gene expression. Therefore, in the absence of gC, HSV-1 is readily inhibited by complement by a C5-dependent mechanism that does not require viral lysis, aggregation, or blocking virus attachment.  相似文献   
53.
Principal component models for sparse functional data   总被引:5,自引:0,他引:5  
James  GM; Hastie  TJ; Sugar  CA 《Biometrika》2000,87(3):587-602
  相似文献   
54.
55.
56.
57.

Purpose

This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs) and to poly(ADP-ribose) polymerase (PARP) inhibitors.

Methods

Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.

Results

Thirty five (22.2%) of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7%) of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%), and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%). In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined) were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined) were identified in the hereditary non-triple-negative group.

Conclusions

Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.  相似文献   
58.

Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) is a large, anadromous fish native to the Atlantic Coast of North America. Although this species once supported important fisheries, centuries of exploitation and habitat degradation have resulted in dramatic declines, presumed extirpation in some rivers, and ultimately listing under the U.S. Endangered Species Act (ESA). Under the ESA, Atlantic sturgeon are listed as five separate Distinct Population Segments (DPSs), which form the basis for federal management. Despite state and federal protections Atlantic sturgeon still face significant threats to their recovery, including fisheries bycatch mortality, marine construction, dredging, dams, and vessel strikes. However, because subadult and adult Atlantic sturgeon migrate extensively across estuarine and marine environments and frequently form mixed-stock aggregations in non-natal habitats, it can be difficult to determine how these threats impact specific populations and DPSs. To better understand ontogenetic shifts in habitat use and stock-specific exposure to anthropogenic threats, we performed a mixed-stock analysis of 1704 Atlantic sturgeon encountered across the U.S. Atlantic Coast. Collections made north of Cape Cod, MA and south of Cape Hatteras, NC were dominated by individuals from regional stocks; however, we found extensive stock mixing in the mid-Atlantic region, particularly in coastal environments where individuals from all five DPSs were commonly observed. Subadults and adults that were encountered in offshore environments had moved, on average, 277 km from their natal source; however, 23% were sampled over 500 km from their natal river suggesting long-distance movements are relatively common in these age classes. Overall, our work highlights that Atlantic sturgeon populations are vulnerable to threats over vast areas and emphasizes the need for continued genetic monitoring to track recovery progress.

  相似文献   
59.
60.
Zapus hudsonius preblei, listed as threatened under the US Endangered Species Act (ESA), is one of 12 recognized subspecies of meadow jumping mice found in North America. Recent morphometric and phylogenetic comparisons among Z. h. preblei and neighbouring conspecifics questioned the taxonomic status of selected subspecies, resulting in a proposal to delist the Z. h. preblei from the ESA. We present additional analyses of the phylogeographic structure within Z. hudsonius that calls into question previously published data (and conclusions) and confirms the original taxonomic designations. A survey of 21 microsatellite DNA loci and 1380 base pairs from two mitochondrial DNA (mtDNA) regions (control region and cytochrome b) revealed that each Z. hudsonius subspecies is genetically distinct. These data do not support the null hypothesis of a homogeneous gene pool among the five subspecies found within the southwestern portion of the species' range. The magnitude of the observed differentiation was considerable and supported by significant findings for nearly every statistical comparison made, regardless of the genome or the taxa under consideration. Structuring of nuclear multilocus genotypes and subspecies-specific mtDNA haplotypes corresponded directly with the disjunct distributions of the subspecies investigated. Given the level of correspondence between the observed genetic population structure and previously proposed taxonomic classification of subspecies (based on the geographic separation and surveys of morphological variation), we conclude that the nominal subspecies surveyed in this study do not warrant synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and Z. h. intermedius.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号