首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   3篇
  118篇
  2023年   1篇
  2022年   2篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   4篇
  2008年   14篇
  2007年   10篇
  2006年   8篇
  2005年   7篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1998年   2篇
  1992年   1篇
排序方式: 共有118条查询结果,搜索用时 0 毫秒
61.
Positively charged amino acids in S4 segments of voltage-dependent Ca(V)3.1 channel form putative voltage sensor. Previously we have shown that exchange of uppermost positively charged arginine in IVS4 segment for cysteine (mutation R1717C) affected deactivation and inactivation, but not activation of macroscopic current. Now we compared gating currents from both channels. Maximal amplitude of charge movement in R1717C channel decreased but voltage-dependent characteristics of charge movement were not significantly altered. We concluded that mutation of R1717C affects the coupling between S4 activation and pore opening, but not the S4 activation itself.  相似文献   
62.
The aim of the study was to investigate the efficiency and kinetics of fertilization in oocytes with different meiotic competence, as defined by the phase of the follicular wave and follicle size. Oocytes were recovered from cows with synchronized estrus cycles, slaughtered in either the growth (day 3) or the dominant (day 7) phase, separately from large, medium and small follicles. The oocytes were matured and fertilized by a standard protocol. Twenty-four hours after fertilization, the oocytes were denuded from cumulus cells, fixed and stained with bisbensimid Hoechst-PBS. Fertilization was more efficient and the first cleavage was accelerated in growth phase-derived oocytes, as shown by significantly higher (p < or = 0.01) proportions of both normally fertilized and cleaved oocytes (68.8 and 25.1%), in comparison with dominant phase-derived oocytes (44.2 and 10.3%). In the growth-phase derived oocytes, proportions of normally fertilized and cleaved oocytes were significantly higher (p < or = 0.01) in oocytes from large (100.0 and 36.4%) and medium (83.3 and 36.5%) follicles than in those from small (54.8 and 14.6%) follicles. The dominant phase-derived oocytes showed higher proportions of normally fertilized and cleaved oocytes in the populations recovered from small (51.5 and 10.0%) and medium (43.1 and 12.0%) follicles than in those from large (25.0 and 0%) follicles; however, the differences were not significant. It can be concluded that: (i) efficiency and kinetics of fertilization differ in relation to oocyte's meiotic competence; (ii) improved development of embryos from oocytes with greater meiotic competence is associated with a more effective fertilization process.  相似文献   
63.
Chemotaxis, a process leading to movement of cells toward increasing concentrations of chemoattractants, is essential, among others, for recruitment of mast cells within target tissues where they play an important role in innate and adaptive immunity. Chemotaxis is driven by chemoattractants, produced by various cell types, as well as by intrinsic cellular regulators, which are poorly understood. In this study we prepared a new mAb specific for the tetraspanin CD9. Binding of the antibody to bone marrow-derived mast cells triggered activation events that included cell degranulation, Ca2+ response, dephosphorylation of ezrin/radixin/moesin (ERM) family proteins, and potent tyrosine phosphorylation of the non-T cell activation linker (NTAL) but only weak phosphorylation of the linker for activation of T cells (LAT). Phosphorylation of the NTAL was observed with whole antibody but not with its F(ab)2 or Fab fragments. This indicated involvement of the Fcγ receptors. As documented by electron microscopy of isolated plasma membrane sheets, CD9 colocalized with the high-affinity IgE receptor (FcϵRI) and NTAL but not with LAT. Further tests showed that both anti-CD9 antibody and its F(ab)2 fragment inhibited mast cell chemotaxis toward antigen. Experiments with bone marrow-derived mast cells deficient in NTAL and/or LAT revealed different roles of these two adaptors in antigen-driven chemotaxis. The combined data indicate that chemotaxis toward antigen is controlled in mast cells by a cross-talk among FcϵRI, tetraspanin CD9, transmembrane adaptor proteins NTAL and LAT, and cytoskeleton-regulatory proteins of the ERM family.  相似文献   
64.
The antiviral role of RNA interference (RNAi) in humans remains to be better understood. In RNAi, Ago2 proteins and microRNAs (miRNAs) or small interfering RNAs (siRNAs) form endonucleolytically active complexes which down-regulate expression of target mRNAs. P-bodies, cytoplasmic centers of mRNA decay, are involved in these pathways. Evidence exists that hepatitis C virus (HCV) utilizes host cellular RNAi machinery, including miRNA-122, Ago1-4, and Dicer proteins for replication and viral genome translation in Huh7 cells by, so far, nebulous mechanisms. Conversely, synthetic siRNAs have been used to suppress HCV replication. Here, using a combination of biochemical, transfection, confocal imaging, and digital image analysis approaches, we reveal that replication of HCV RNA depends on recruitment of Ago2 and miRNA-122 to lipid droplets, while suppression of HCV RNA by siRNA and Ago2 involves interaction with P-bodies. Such partitioning of Ago2 proteins into different complexes and separate subcellular domains likely results in modulation of their activity by different reaction partners. We propose a model in which partitioning of host RNAi and viral factors into physically and functionally distinct subcellular compartments emerges as a mechanism regulating the dual interaction of cellular RNAi with HCV RNA.  相似文献   
65.
66.
The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined. Here, we examined the activation of bone marrow-derived mast cells (BMMCs) with PAG knockout and PAG knockdown and the corresponding controls. Our data show that PAG-deficient BMMCs exhibit impaired antigen-induced degranulation, extracellular calcium uptake, tyrosine phosphorylation of several key signaling proteins (including the high-affinity IgE receptor subunits, spleen tyrosine kinase, and phospholipase C), production of several cytokines and chemokines, and chemotaxis. The enzymatic activities of the LYN and FYN kinases were increased in nonactivated cells, suggesting the involvement of a LYN- and/or a FYN-dependent negative regulatory loop. When BMMCs from PAG-knockout mice were activated via the KIT receptor, enhanced degranulation and tyrosine phosphorylation of the receptor were observed. In vivo experiments showed that PAG is a positive regulator of passive systemic anaphylaxis. The combined data indicate that PAG can function as both a positive and a negative regulator of mast cell signaling, depending upon the signaling pathway involved.  相似文献   
67.
68.
Forty-three epidemiologically unrelated emerging Salmonella enterica subsp. enterica serovar 4,[5],12:i:- strains isolated during the period 2009–2010 in Slovakia were characterized by phenotypic and genotypic methods. Thirty-one isolates (72.1%) expressed resistance to ampicillin, streptomycin, sulfizoxazole, and tetracycline [R-type ASSuT]. The majority of the strains belonged to both definitive phage types DT193 (30.2%) and U311 (27.9%). Other phage types identified were U302 (6.9%), DT18 (4.7%), and DT194 (2.3%). Twelve strains (27.9%) were not typeable. Pulsed-field gel electrophoresis analysis identified three closely related major banding profiles (X1, X1a, and X2), suggesting the similarity and close epidemiological relationship between S. enterica serovar 4,[5],12:i:- strains. In two isolates with R-type ASSuT, phage type NT and in one isolate with R-type ACROSSuSxTTTMPNA, phage type DT193 class 1 integrons were found encoding blaPSE-1 and dfrA, aadA1, respectively.  相似文献   
69.
The aim of this work was to characterize oocyte fertilization and embryo cleavage in nine AI bulls to find parameters suitable for prediction of in vitro fertility. According to the d8 blastocysts rate, they were categorized as high, medium and low productive (HP, MP and LP, mean: 25.4, 21.0 and 13.6% respectively) bulls. For these categories, oocyte penetration and fertilization efficiency were assessed at 6 and 18 hours post insemination (hpi), respectively. Some presumptive zygotes were cultured and cleaved and fast-cleaved embryo rates were checked at 44 hpi. The penetration rate was significantly higher for HP bulls than for MP and LP bulls (67.9 versus 50.3 and 33.1%; p<0.01). The syngamy rate was significantly higher for HP bulls than for MP and LP bulls (21.4 versus 10.2 and 5.7%; p<0.05). Conversely, no significant differences in fertilization rates were found among HP, MP and LP bulls. The cleavage rate was significantly higher for HP than LP bulls (82.4 versus 74.4%; p<0.01). The fast cleavage rate was significantly higher for both HP and MP bulls, as compared with LP bulls (82.1 and 84.7 versus 73.5%; p<0.01). A strong correlation was found between blastocyst production and penetration (r=0.803), syngamy (r=0.826), cleavage (r=0.635) and fast cleavage (r=0.709). In conclusion, all the evaluated parameters showed a predictive value, the most significant being early penetration and syngamy.  相似文献   
70.
The paper presents a methodology for using computational neurogenetic modelling (CNGM) to bring new original insights into how genes influence the dynamics of brain neural networks. CNGM is a novel computational approach to brain neural network modelling that integrates dynamic gene networks with artificial neural network model (ANN). Interaction of genes in neurons affects the dynamics of the whole ANN model through neuronal parameters, which are no longer constant but change as a function of gene expression. Through optimization of interactions within the internal gene regulatory network (GRN), initial gene/protein expression values and ANN parameters, particular target states of the neural network behaviour can be achieved, and statistics about gene interactions can be extracted. In such a way, we have obtained an abstract GRN that contains predictions about particular gene interactions in neurons for subunit genes of AMPA, GABAA and NMDA neuro-receptors. The extent of sequence conservation for 20 subunit proteins of all these receptors was analysed using standard bioinformatics multiple alignment procedures. We have observed abundance of conserved residues but the most interesting observation has been the consistent conservation of phenylalanine (F at position 269) and leucine (L at position 353) in all 20 proteins with no mutations. We hypothesise that these regions can be the basis for mutual interactions. Existing knowledge on evolutionary linkage of their protein families and analysis at molecular level indicate that the expression of these individual subunits should be coordinated, which provides the biological justification for our optimized GRN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号