首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   12篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   11篇
  2009年   3篇
  2008年   12篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1978年   1篇
排序方式: 共有112条查询结果,搜索用时 562 毫秒
61.
A peptide with 42 amino acid residues (Aβ42) plays a key role in the pathogenesis of the Alzheimer’s disease. It is highly prone to self aggregation leading to the formation of fibrils which are deposited in amyloid plaques in the brain of diseased individuals. In our study we established a method to analyze the aggregation behavior of the Aβ peptide with a combination of sedimentation velocity centrifugation and enhanced data evaluation software as implemented in the software package UltraScan. Important information which becomes accessible by this methodology is the s-value distribution and concomitantly also the shape-distribution of the Aβ peptide aggregates generated by self-association. With this method we characterized the aggregation modifying effect of a designed β-sheet breaker molecule. This compound is built from three head-to-tail connected aminopyrazole moieties and represents a derivative of the already described Tripyrazole. By addition of this compound to a solution of the Aβ42 peptide the maximum of the s-value distribution was clearly shifted to smaller s-values as compared to solutions where only the vehicle DMSO was added. This shift to smaller s-values was stable for at least 7 days. The information about size- and shape-distributions present in aggregated Aβ42 solutions was confirmed by transmission electron microscopy and by measurement of amyloid formation by thioflavin T fluorescence.  相似文献   
62.
A solid process for diagnosis could have a substantial impact on the successful treatment of pancreatic cancer, for which currently mortality is nearly identical to incidence. Variations in the abundance of all microRNA molecules from peripheral blood cells and pancreas tissues were analyzed on microarrays and in part validated by real-time PCR assays. In total, 245 samples from two clinical centers were studied that were obtained from patients with pancreatic ductal adenocarcinoma or chronic pancreatitis and from healthy donors. Utilizing the minimally invasive blood test, receiver operating characteristic (ROC) curves and the corresponding area under the curve (AUC) analysis demonstrated very high sensitivity and specificity of a distinction between healthy people and patients with either cancer or chronic pancreatitis; respective AUC values of 0.973 and 0.950 were obtained. Confirmative and partly even more discriminative diagnosis could be performed on tissue samples with AUC values of 1.0 and 0.937, respectively. In addition, discrimination between cancer and chronic pancreatitis was achieved (AUC = 0.875). Also, several miRNAs were identified that exhibited abundance variations in both tissue and blood samples. The results could have an immediate diagnostic value for the evaluation of tumor reoccurrence in patients, who have undergone curative surgical resection, and for people with a familial risk of pancreatic cancer.  相似文献   
63.
64.
Mutational analysis of the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) template channel identified two residues, Trp(397) and His(428), which are required for de novo initiation but not for extension from a primer. These two residues interact with the Delta1 loop on the surface of the RdRp. A deletion within the Delta1 loop also resulted in comparable activities. The mutant proteins exhibit increased double-stranded RNA binding compared with the wild type, suggesting that the Delta1 loop serves as a flexible locking mechanism to regulate the conformations needed for de novo initiation and for elongative RNA synthesis. A similar locking motif can be found in other viral RdRps. Products associated with the open conformation of the HCV RdRp were inhibited by interaction with the retinoblastoma protein but not cyclophilin A. Different conformations of the HCV RdRp can thus affect RNA synthesis and interaction with cellular proteins.  相似文献   
65.
We describe an extension of the adaptive space-time finite element method (ASTFEM) used in the solution of the Lamm equation to the case of multicomponent reacting systems. We use an operator splitting technique to decouple the sedimentation-diffusion process from the reaction process. The former is solved with an ASTFEM approach based on the Petrov-Galerkin method and on adaptive moving grids, and the latter is solved with the implicit midpoint Euler's method. Our solution can effectively eliminate the sedimentation errors for each component or species involved in the reaction, and it is free from oscillation near the cell bottom. It offers second-order accuracy, and guarantees conservation of mass without any additional postprocessing, and it permits modeling of multicomponent, equilibrating systems where the reaction rate can be kinetically controlled between an instantaneous reaction and a noninteracting mixture. The proposed ASTFEM solution provides improved efficiency and accuracy compared to classical approaches, especially when medium-sized and large molecules are modeled.  相似文献   
66.
Ribosome biogenesis in eukaryotes requires the participation of a large number of ribosome assembly factors. The highly conserved eukaryotic nucleolar protein Nep1 has an essential but unknown function in 18S rRNA processing and ribosome biogenesis. In Saccharomyces cerevisiae the malfunction of a temperature-sensitive Nep1 protein (nep1-1(ts)) was suppressed by the addition of S-adenosylmethionine (SAM). This suggests the participation of Nep1 in a methyltransferase reaction during ribosome biogenesis. In addition, yeast Nep1 binds to a 6-nt RNA-binding motif also found in 18S rRNA and facilitates the incorporation of ribosomal protein Rps19 during the formation of pre-ribosomes. Here, we present the X-ray structure of the Nep1 homolog from the archaebacterium Methanocaldococcus jannaschii in its free form (2.2 A resolution) and bound to the S-adenosylmethionine analog S-adenosylhomocysteine (SAH, 2.15 A resolution) and the antibiotic and general methyltransferase inhibitor sinefungin (2.25 A resolution). The structure reveals a fold which is very similar to the conserved core fold of the SPOUT-class methyltransferases but contains a novel extension of this common core fold. SAH and sinefungin bind to Nep1 at a preformed binding site that is topologically equivalent to the cofactor-binding site in other SPOUT-class methyltransferases. Therefore, our structures together with previous genetic data suggest that Nep1 is a genuine rRNA methyltransferase.  相似文献   
67.
Box C/D small ribonucleoprotein particles (sRNPs) are archaeal homologs of small nucleolar ribonucleoprotein particles (snoRNPs) in eukaryotes that are responsible for site specific 2'-O-methylation of ribosomal and transfer RNAs. The function of box C/D sRNPs is characterized by step-wise assembly of three core proteins around a box C/D RNA that include fibrillarin, Nop5p, and L7Ae. The most distinct structural feature in all box C/D RNAs is the presence of two conserved box C/D motifs accompanied by often a single, and sometimes two, antisense elements located immediately upstream of either the D or D' box. Despite this asymmetric distribution of antisense elements, the bipartite feature of the box C/D motifs appears to be in pleasing agreement with a recently reported three-dimensional structure of the core protein complex between fibrillarin and Nop5p. This investigates functional implications of the symmetric features both in box C/D RNAs and in the fibrillarin-Nop5p complex. Site-directed mutagenesis was employed to generate box C/D RNAs lacking one of the two box C/D motifs and a mutant fibrillarin-Nop5p complex deficient in self-association. The ability of the mutated components to assemble and to direct methyl transfer reactions was assessed by gel mobility-shift, analytical ultracentrifugation, and in vitro catalysis studies. The results presented here suggest that, while a box C/D sRNP is capable of asymmetrical assembly, the symmetries in both the box C/D RNA and in the fibrillarin-Nop5p complex are required for efficient catalysis. These findings underscore the importance of functional assembly in methyl transfer reactions.  相似文献   
68.
Eubacterium rectale is a prominent human gut symbiont yet little is known about the molecular strategies this bacterium has developed to acquire nutrients within the competitive gut ecosystem. Starch is one of the most abundant glycans in the human diet, and E. rectale increases in vivo when the host consumes a diet rich in resistant starch, although it is not a primary degrader of this glycan. Here we present the results of a quantitative proteomics study in which we identify two glycoside hydrolase 13 family enzymes, and three ABC transporter solute‐binding proteins that are abundant during growth on starch and, we hypothesize, work together at the cell surface to degrade starch and capture the released maltooligosaccharides. EUR_21100 is a multidomain cell wall anchored amylase that preferentially targets starch polysaccharides, liberating maltotetraose, whereas the membrane‐associated maltogenic amylase EUR_01860 breaks down maltooligosaccharides longer than maltotriose. The three solute‐binding proteins display a range of glycan‐binding specificities that ensure the capture of glucose through maltoheptaose and some α1,6‐branched glycans. Taken together, we describe a pathway for starch utilization by E. rectale DSM 17629 that may be conserved among other starch‐degrading Clostridium cluster XIVa organisms in the human gut.  相似文献   
69.
Human Long Intergenic Noncoding RNA-p21 (LincRNA-p21) is a regulatory noncoding RNA that plays an important role in promoting apoptosis. LincRNA-p21 is also critical in down-regulating many p53 target genes through its interaction with a p53 repressive complex. The interaction between LincRNA-p21 and the repressive complex is likely dependent on the RNA tertiary structure. Previous studies have determined the two-dimensional secondary structures of the sense and antisense human LincRNA-p21 AluSx1 IRs using SHAPE. However, there were no insights into its three-dimensional structure. Therefore, we in vitro transcribed the sense and antisense regions of LincRNA-p21 AluSx1 Inverted Repeats (IRs) and performed analytical ultracentrifugation, size exclusion chromatography, light scattering, and small angle X-ray scattering (SAXS) studies. Based on these studies, we determined low-resolution, three-dimensional structures of sense and antisense LincRNA-p21. By adapting previously known two-dimensional information, we calculated their sense and antisense high-resolution models and determined that they agree with the low-resolution structures determined using SAXS. Thus, our integrated approach provides insights into the structure of LincRNA-p21 Alu IRs. Our study also offers a viable pipeline for combining the secondary structure information with biophysical and computational studies to obtain high-resolution atomistic models for long noncoding RNAs.  相似文献   
70.
In species with a high risk of infanticide, a conflict of interest exists between the sexes over the amount of paternity information that is available to males. While females are expected to keep males unaware of their reproductive status in order to confuse paternity, selection should favor those male traits that enhance the males' assessment of female status and consequently of paternity probability. In Hanuman langurs (Semnopithecus entellus), a species that is extremely vulnerable to infanticide, females have been shown to successfully conceal the exact timing of ovulation from males--perhaps because they exhibit no sexual swelling and mate during all reproductive phases, including gestation. Nevertheless, it remains unclear whether males have hitherto unrecognized information about females' reproductive condition on a broader level that could still enhance male reproductive success. We investigated male assessment of female reproductive states in a population of wild Hanuman langurs as indicated by changes in male behavior, such as rates of copulations, anogenital inspections, and consortships, in relation to different female receptive periods (pregnant, fertile-nonconceptional, and conceptional). Our data indicate that males were able to discern qualitatively distinct reproductive states. Males were more interested in fertile than pregnant females, as indicated by higher copulation rates. Based on consortships, males distinguished fertile from nonfertile phases, as well as fertile, nonconceptional receptive periods from conceptional ones. Hanuman langur males are thus not as unaware of female reproductive condition as previously thought, supporting the idea of an ongoing battle of the sexes over paternity information. However, granting some knowledge while at the same time concealing the exact day of ovulation may also reflect a pure female strategy of balancing paternity concentration with paternity confusion, which is the most likely strategy in this system with high infanticide risk and male defense of infants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号