首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   39篇
  2024年   1篇
  2023年   5篇
  2022年   11篇
  2021年   16篇
  2020年   12篇
  2019年   21篇
  2018年   20篇
  2017年   20篇
  2016年   31篇
  2015年   38篇
  2014年   26篇
  2013年   30篇
  2012年   28篇
  2011年   36篇
  2010年   26篇
  2009年   19篇
  2008年   24篇
  2007年   30篇
  2006年   15篇
  2005年   14篇
  2004年   10篇
  2003年   10篇
  2002年   15篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1979年   1篇
排序方式: 共有482条查询结果,搜索用时 15 毫秒
41.
Myo-inositol-1-phosphatase (EC 3.1.3.25) is able to hydrolyze myo-inositol-1-phosphate in the presence of Mg(2+) ions at neutral pH, and also p-nitrophenyl phosphate in the presence of Zn(2+)-ions at acidic pH. This enzyme plays a role in phosphatidylinositol cell signalling and is a putative target of lithium therapy in manic depression. We elucidate here the kinetic mechanism of the Zn-dependent activity of myo-inositol-1-phosphatase. As part of this analysis it was necessary to determine the basicity constants of p-nitrophenyl phosphate and the stability constant of its metal-complex in the presence of zinc chloride. We find that the Zn-dependent reaction may be described either by a rapid-equilibrium random mechanism or an ordered steady-state mechanism in which the substrate binds to the free enzyme prior to the metal ion. In both models the Zn-substrate complex acts as a high affinity inhibitor, yielding a dead-end species through its binding to the enzyme-Zn-substrate in rapid-equilibrium or to the enzyme-phosphate complexes in a steady-state model. Phosphate is a competitive inhibitor of the enzyme with respect to the substrate and an uncompetitive inhibitor with respect to zinc ions.  相似文献   
42.
The multichromophoric character of two sulfonylurea herbicides, SMT and BNS, has been investigated in its manifestations in the electronic absorption spectra and in some fluorescence properties through a combined experimental and theoretical approach. After a theoretical analysis of the most stable structures of these flexible systems, the UV absorption spectra of the two multichromophoric compounds have been analysed both experimentally and theoretically, and most transitions have been assigned to individual chromophores, also by comparison with four suitable reference compounds (5-8). Finally, some experimental information concerning the fluorescence spectra and quantum yields have been analysed with reference to the contributions from single fluorophores and the role of low-lying n → π states.  相似文献   
43.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   
44.
Calreticulin (CRT), as an endoplasmic reticulum luminal resident protein, plays important roles in Ca(2+) homeostasis and molecular chaperoning. CRT on the surface of the cell can modulate cell adhesion, phagocytosis and integrin-dependent Ca(2+) signaling. The full length cDNA of calreticulin (FcCRT) was cloned from Chinese shrimp Fenneropenaeus chinensis. It consists of 1672 bp with an open reading frame of 1221 bp, encoding 406 amino acids. This is the first reported cDNA sequence of calreticulin in Crustacea. The deduced amino acid sequence of FcCRT showed high identity with those of Bombyx mori (88%), Drosophila melanogaster (83%), Mus musculus (82%) and Homo sapiens (82%). Highest expression of FcCRT was detected in ovary by Northern blot and in situ hybridization. Different mRNA levels of FcCRT were detected at various molting stages. Expression of FcCRT was induced significantly after 3 h of heat shock treatment, reached the maximum at 4 h and dropped after that. Differential expression profiles of FcCRT were observed in hepatopancreas and haemocytes when shrimp were challenged by white spot syndrome virus (WSSV). From the above results, we inferred that FcCRT might play important roles in Ca(2+) homeostasis, chaperoning and immune function in shrimp.  相似文献   
45.
Sarcomeric myosin heavy chains (MyHC) are the major contractile proteins of cardiac and skeletal muscles and belong to class II MyHC. In this study the sequences of nine sarcomeric MyHC isoforms were obtained by combining assembled contigs of the dog genome draft available in the NCBI database. With this information available the dog becomes the second species, after human, for which the sequences of all members of the sarcomeric MyHC gene family are identified. The newly determined sequences of canine MyHC isoforms were aligned with their orthologs in mammals, forming a set of 38 isoforms, to search for the molecular features that determine the structural and functional specificity of each type of isoform. In this way the structural motifs that allow identification of each isoform and are likely determinants of functional properties were identified in six specific regions (surface loop 1, loop 2, loop 3, converter, MLC binding region, and S2 proximal segment).  相似文献   
46.
The cytotoxic T lymphocyte antigen-4 (CTLA-4)-blocking antibody ipilimumab induces immune-mediated long-term control of metastatic melanoma in a fraction of patients. Although ipilimumab undoubtedly exerts its therapeutic effects via immunostimulation, thus far clinically useful, immunologically relevant biomarkers that predict treatment efficiency have been elusive. Here, we show that neutralization of IL-2 or blocking the α and β subunits of the IL-2 receptor (CD25 and CD122, respectively) abolished the antitumor effects and the accompanying improvement of the ratio of intratumoral T effector versus regulatory cells (Tregs), which were otherwise induced by CTLA-4 blockade in preclinical mouse models. CTLA-4 blockade led to the reduction of a suppressive CD4+ T cell subset expressing Lag3, ICOS, IL-10 and Egr2 with a concomitant rise in IL-2-producing effector cells that lost FoxP3 expression and accumulated in regressing tumors. While recombinant IL-2 improved the therapeutic efficacy of CTLA-4 blockade, the decoy IL-2 receptor α (IL-2Rα, sCD25) inhibited the anticancer effects of CTLA-4 blockade. In 262 metastatic melanoma patients receiving ipilimumab, baseline serum concentrations of sCD25 represented an independent indicator of overall survival, with high levels predicting resistance to therapy. Altogether, these results unravel a role for IL-2 and IL-2 receptors in the anticancer activity of CTLA-4 blockade. Importantly, our study provides the first immunologically relevant biomarker, namely elevated serum sCD25, that predicts resistance to CTLA-4 blockade in patients with melanoma.  相似文献   
47.
The construction of a EP(4) antagonists pharmacophore model and the discovery of a highly potent oxepinic series of EP(4) antagonists is discussed. Compound 1a exhibits an excellent selectivity profile toward EP(2) receptor subtype and low cytochrome P450 inhibition potential.  相似文献   
48.
In Pseudomonas aeruginosa, the chromosomally encoded class C cephalosporinase (AmpC β-lactamase) is often responsible for high-level resistance to β-lactam antibiotics. Despite years of study of these important β-lactamases, knowledge regarding how amino acid sequence dictates function of the AmpC Pseudomonas-derived cephalosporinase (PDC) remains scarce. Insights into structure-function relationships are crucial to the design of both β-lactams and high-affinity inhibitors. In order to understand how PDC recognizes the C3/C4 carboxylate of β-lactams, we first examined a molecular model of a P. aeruginosa AmpC β-lactamase, PDC-3, in complex with a boronate inhibitor that possesses a side chain that mimics the thiazolidine/dihydrothiazine ring and the C3/C4 carboxylate characteristic of β-lactam substrates. We next tested the hypothesis generated by our model, i.e. that more than one amino acid residue is involved in recognition of the C3/C4 β-lactam carboxylate, and engineered alanine variants at three putative carboxylate binding amino acids. Antimicrobial susceptibility testing showed that the PDC-3 β-lactamase maintains a high level of activity despite the substitution of C3/C4 β-lactam carboxylate recognition residues. Enzyme kinetics were determined for a panel of nine penicillin and cephalosporin analog boronates synthesized as active site probes of the PDC-3 enzyme and the Arg349Ala variant. Our examination of the PDC-3 active site revealed that more than one residue could serve to interact with the C3/C4 carboxylate of the β-lactam. This functional versatility has implications for novel drug design, protein evolution, and resistance profile of this enzyme.  相似文献   
49.
Despite growing scientific interest in the placebo effect and increasing understanding of neurobiological mechanisms, theoretical conceptualization of the placebo effect remains poorly developed. Substantial mechanistic research on this phenomenon has proceeded with little guidance by any systematic theoretical paradigm. This review seeks to present a theoretical perspective on the formation of placebo responses. We focus on information processing, and argue that different kinds of learning along with individuals' genetic make-up evolved as the proximate cause for triggering behavioural and neural mechanisms that enable the formation of individual expectations and placebo responses. Conceptualizing the placebo effect in terms of learning offers the opportunity for facilitating scientific investigation with a significant impact on medical care.  相似文献   
50.
The field of placebo research has made considerable progress in the last years and it has become a major focus of interest. We know now that the placebo effect is a real neurobiological phenomenon and that the brain's 'inner pharmacy' is a critical determinant for the occurrence of psychobiological and behavioural changes relevant to healing processes and well-being. However, harnessing the advantages of placebo effects in healthcare is still a challenge. The first part of the theme issue summarizes and discusses the various kinds of placebo mechanisms across medical fields, thereby not only focusing on two main explanatory models-expectation and conditioning theory-but also taking into account empathy and social learning, emotion and motivation, spirituality and the healing ritual. The second part of the issue focuses on questions related to transferring knowledge from placebo research into clinical practice and discusses implications for the design and interpretation of clinical trials, for the therapeutic settings in daily patient care, and for future translational placebo research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号