首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   78篇
  国内免费   52篇
  899篇
  2024年   2篇
  2023年   18篇
  2022年   38篇
  2021年   46篇
  2020年   23篇
  2019年   39篇
  2018年   37篇
  2017年   31篇
  2016年   27篇
  2015年   45篇
  2014年   63篇
  2013年   48篇
  2012年   73篇
  2011年   54篇
  2010年   35篇
  2009年   31篇
  2008年   41篇
  2007年   47篇
  2006年   31篇
  2005年   31篇
  2004年   14篇
  2003年   16篇
  2002年   14篇
  2001年   12篇
  2000年   8篇
  1999年   8篇
  1998年   10篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   10篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1960年   1篇
  1958年   1篇
排序方式: 共有899条查询结果,搜索用时 26 毫秒
91.
Long non‐coding RNAs (lncRNAs) are involved in the resistance of plants to infection by pathogens via interactions with microRNAs (miRNAs). Long non‐coding RNAs are cleaved by miRNAs to produce phased small interfering RNAs (phasiRNAs), which, as competing endogenous RNAs (ceRNAs), function as decoys for mature miRNAs, thus inhibiting their expression, and contain pre‐miRNA sequences to produce mature miRNAs. However, whether lncRNAs and miRNAs mediate other molecular mechanisms during plant resistance to pathogens is unknown. In this study, as a positive regulator, Sl‐lncRNA15492 from tomato (Solanum lycopersicum Zaofen No. 2) plants affected tomato resistance to Phytophthora infestans. Gain‐ and loss‐of‐function experiments and RNA ligase‐mediated 5′‐amplification of cDNA ends (RLM‐5′ RACE) also revealed that Sl‐miR482a was negatively involved in tomato resistance by targeting SlNBS‐LRR genes and that silencing of SlNBS‐LRR1 decreased tomato resistance. Sl‐lncRNA15492 inhibited the expression of mature Sl‐miR482a, whose precursor was located within the antisense sequence of Sl‐lncRNA15492. Further degradome analysis and additional RLM‐5′ RACE experiments verified that mature Sl‐miR482a could also cleave Sl‐lncRNA15492. These results provide a mechanism by which lncRNAs might inhibit precursor miRNA expression through antisense strands of lncRNAs, and demonstrate that Sl‐lncRNA15492 and Sl‐miR482a mutually inhibit the maintenance of Sl‐NBS‐LRR1 homeostasis during tomato resistance to P. infestans.  相似文献   
92.
93.
The definition of relatively stable expressed internal reference genes is essential in both traditional blotting quantification and as a modern data quantitative strategy. Appropriate internal reference genes can accurately standardize the expression abundance of target genes to avoid serious experimental errors. In this study, the expression profiles of ten candidate genes, ACT1, ACT2, GAPDH, eIF1, eIF2, α-TUB, β-TUB, TBP, RNA Pol II and RP II, were calculated for a suitable reference gene selection in Paeonia ostii T. Hong et J. X. Zhang leaves under various drought stress conditions. Data were processed by the four regularly used evaluation software. A comprehensive analysis revealed that RNA Pol II was the most stable gene and eIF2 was the least stable one. In addition, the geNorm program provided the optimal choice of two reference gene combination, RNA Pol II and β-TUB, for qRT-PCR normalization in P. ostii subjected to different drought stress levels. Our research provided convenience for gene expression analysis in P. ostii under drought stress and promoted research of effective methods to alleviate P. ostii drought stress in the future.  相似文献   
94.
Evidence is emerging that t RNA-derived fragments(t RFs) are regulatory molecules. Studies of t RFs in plants have been based on conventional small RNA sequencing, and focused on profiling of t RF-5 and t RF-3 species. A more comprehensive and quantitative analysis of the entire t RF population is highly necessary. Here, we employ t RNA-seq and YAMAT-seq, and develop a bioinformatics tool to comprehensively profile the expressions of t RNAs and t RFs in plants. We show that in Arabidopsis,approximately half of t RNA genes are extremely weakly expressed, accounting for only 1% of total t RNA abundance, while~12% of t RNA genes contribute to ~80% of t RNA abundance. Our t RNA sequencings in various plants reveal that t RNA expression profiles exhibit a cross-species conserved pattern. By characterizing the composition of a highly heterogeneous t RF population, we show that t RNA halves and previously unnoticed 10–16-nt tiny t RFs represent substantial portions. The highly accumulated 13-nt and 16-nt tiny t RFs in Arabidopsis indicate that tiny t RFs are not random t RNA degradation products. Finally,we provide a user-friendly database for displaying the dynamic spatiotemporal expressions of t RNAs and t RFs in the model plants Arabidopsis and rice.  相似文献   
95.
96.
Hepatic steatosis is associated with insulin resistance and metabolic syndrome because of increased hepatic triglyceride content. We have reported previously that deficiency of response gene to complement 32 (RGC-32) prevents high-fat diet (HFD)-induced obesity and insulin resistance in mice. This study was conducted to determine the role of RGC-32 in the regulation of hepatic steatosis. We observed that hepatic RGC-32 was induced dramatically by both HFD challenge and ethanol administration. RGC-32 knockout (RGC32−/−) mice were resistant to HFD- and ethanol-induced hepatic steatosis. The hepatic triglyceride content of RGC32−/− mice was decreased significantly compared with WT controls even under normal chow conditions. Moreover, RGC-32 deficiency decreased the expression of lipogenesis-related genes, sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase, and stearoyl-CoA desaturase 1 (SCD1). RGC-32 deficiency also decreased SCD1 activity, as indicated by decreased desaturase indices of the liver and serum. Mechanistically, insulin and ethanol induced RGC-32 expression through the NF-κB signaling pathway, which, in turn, increased SCD1 expression in a SREBP-1c-dependent manner. RGC-32 also promoted SREBP-1c expression through activating liver X receptor. These results demonstrate that RGC-32 contributes to the development of hepatic steatosis by facilitating de novo lipogenesis through activating liver X receptor, leading to the induction of SREBP-1c and its target genes. Therefore, RGC-32 may be a potential novel drug target for the treatment of hepatic steatosis and its related diseases.  相似文献   
97.
98.
99.
It is known that many social insects and arthropod predators and parasitoids can learn the association between a resource and volatile cues. Although there are various studies on the effect of experience in immature arthropods on behavior later in adult life, not much is known about the effects of such experiences on immature behavior. This was investigated here in the lacewing Ceraeochrysa cubana (Hagen) (Neuroptera: Chrysopidae). Whereas adults of this lacewing feed on plant‐provided food and honeydew, larvae are voracious polyphagous predators of several insect pests, and therefore important for biological control. Hence, studying the foraging behavior and the effects of learning in immatures of this species is important. We exposed immatures to the volatile methyl salicylate (MeSA), which was either associated with food or with the absence of food. Subsequently, their response to this volatile was tested in an olfactometer. Immatures that had experienced the association of MeSA with food were attracted to it and immatures that were exposed to MeSA during food deprivation were repelled. Subsequently, predator immatures that had experienced the association between MeSA and food were released on a plant without food and were found to use this volatile in locating patches with food. In contrast, larvae without such experience were found equally on food patches with and without the volatile. We conclude that these immature predators are capable of learning the association between volatiles and food, or the absence of food, and use this during foraging.  相似文献   
100.
Potentilla anserina L., a well-known perennial herb, is widely used in traditional Tibetan medicine and used as a delicious food in humans. The present investigation reports on the activity of P. anserina phenols (PAP) in regulating glycolipid metabolism in 3T3-L1 adipocytes. Insulin sensitivity tests showed that PAP improved insulin-stimulated glucose uptake by promoting the phosphorylation of serine/threonine kinase Akt. Moreover, an assay involving the differentiation of 3T3-L1 preadipocytes demonstrated that PAP also decreased the accumulation of lipid droplets by suppressing the expression of adipokines during the differentiation process. In addition, the underlying mechanism from the aspects of energy metabolism and oxidative stress is also discussed. The improvement in energy metabolism was supported by an increase in mitochondrial membrane potential (MMP) and intracellular ATP. Amelioration of oxidative stress was supported by decreased levels of intracellular reactive oxygen species (ROS). In summary, our findings suggest that PAP can ameliorate the disorder of glycolipid metabolism in insulin resistant 3T3-L1 adipocytes by improving energy metabolism and oxidative stress and might be an attractive candidate for the treatment of diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号