首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78856篇
  免费   6540篇
  国内免费   4874篇
  90270篇
  2024年   138篇
  2023年   902篇
  2022年   2076篇
  2021年   3602篇
  2020年   2326篇
  2019年   2838篇
  2018年   2869篇
  2017年   2030篇
  2016年   2872篇
  2015年   4585篇
  2014年   5294篇
  2013年   5961篇
  2012年   6897篇
  2011年   6355篇
  2010年   3818篇
  2009年   3374篇
  2008年   4114篇
  2007年   3653篇
  2006年   3174篇
  2005年   2679篇
  2004年   2276篇
  2003年   1973篇
  2002年   1730篇
  2001年   1559篇
  2000年   1565篇
  1999年   1447篇
  1998年   847篇
  1997年   797篇
  1996年   808篇
  1995年   736篇
  1994年   687篇
  1993年   530篇
  1992年   818篇
  1991年   657篇
  1990年   601篇
  1989年   531篇
  1988年   421篇
  1987年   362篇
  1986年   336篇
  1985年   299篇
  1984年   221篇
  1983年   199篇
  1982年   112篇
  1981年   118篇
  1980年   86篇
  1979年   147篇
  1978年   84篇
  1977年   95篇
  1975年   111篇
  1974年   116篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
L-cell colony-stimulating factor (CSF-1) is a sialoglycoprotein of molecular weight 70,000 daltons that specifically stimulates macrophage colony formation by single committed cells from normal mouse bone marrow and by various classes of more differentiated tissue-derived mononuclear phagocyte colony-forming cells (Stanley et al., 1978). CSF-1 interacts with target cells by direct and specific binding to membrane receptors (CSF-1 receptors) that are present only on cells of the mononuclear phagocyte series and their precursors. We studied the effect of tumor-promoting phorbol esters on the binding of 125I-labeled CSF-1 (125I-CSF-1) to murine peritoneal exudate macrophages (PEM). Biologically active TPA (12-O-tetradecanoyl phorbol-13-acetate) inhibits the binding of 125I-CSF-1 to its receptor on PEM. This inhibition exhibits temperature, time, and concentration dependence. At 37 degrees C, maximum inhibition occurred at about 10(-7) M; inhibition was 50% at 5 X 10(-9) M. At 0 degrees C, the inhibitory activity of TPA is diminished. The action of TPA on PEM is transient. Treated cells recover their 125I-CSF-1-binding activity whether TPA is later removed or not. The process of recovering CSF-1-binding activity is completely blocked by the addition of cycloheximide. When several phorbol derivatives were tested for their inhibitory activities, only biologically active phorbol esters were found to possess such activities. Furthermore, the inhibitory activities of various phorbol esters are proportional to their tumor-promoting activities. Inhibition appears to be due to a reduction in the total number of available CSF-1 receptors rather than a decrease in receptor affinity.  相似文献   
122.
Porcine pancreas kallikrein A has been crystallized in the presence of the small inhibitor benzamidine, yielding tetragonal crystals of space group P41212 containing two molecules per asymmetric unit. X-ray data up to 2·05 Å resolution have been collected using normal rotation anode as well as synchrotron radiation. The crystal structure of benzamidine-kallikrein has been determined using multiple isomorphous replacement techniques, and has subsequently been refined to a crystallographic R-value of 0·220 by applying a diagonal matrix least-squares energy constraint refinement procedure.Both crystallographically independent kallikrein molecules 1 and 2 are related by a non-integral screw axis and form open, heterologous “dimer” structures. The root-mean-square deviation of both molecules is 0·37 Å for all main-chain atoms. This value is above the estimated mean positional error of about 0·2 Å and reflects some significant conformational differences, especially at surface loops. The binding site of molecule 1 in the asymmetric unit is in contact with residues of molecule 2, whereas the binding site of the latter is free and accessible to the solvent. In both molecules the characteristic “kallikrein loop”, where the peptide chain of kallikrein A is cleaved, is only partially traceable. The carbohydrate attached to Asn95 in this loop, although detectable chemically, is not defined.A comparison of the refined structures of porcine kallikrein and bovine trypsin indicates spatial homology for these enzymes. The root-mean-square difference is 0·68 Å if we compare only main-chain atoms of internal segments. Remarkably large deviations are found in some external loops most of which surround the binding site and form a more compact rampart around it in kallikrein than in trypsin. This feature might explain the strongly reduced activity and accessibility of kallikrein towards large protein substrates and inhibitors (e.g. as shown by the model-building experiments on inhibitor complexes reported by Chen &; Bode. 1983).The conformation of the active site residues is very similar in both enzymes. Tyr99 of kallikrein, which is a leucyl residue in trypsin, protrudes into the binding site and interferes with the binding of peptide substrates (Chen &; Bode. 1983). The kallikrein specificity pocket is significantly enlarged compared with trypsin due to a longer peptide segment, 217 to 220, and to the unique outwards orientation of the carbonyl group of cis-Pro219. Further, the side-chain of Ser226 in porcine kallikrein, which is a glycyl residue in trypsin, partially covers Asp 189 at the bottom of the pocket. These features considerably affect the binding geometry and strength of binding of benzamidine.  相似文献   
123.
Four small nuclear RNAs (snRNAs) have been isolated from Drosophila melanogaster flies. They have been characterized by base analysis, fingerprinting, and injection into Axolotl oocytes. The size of the molecules and the modified base composition suggest that the following correlations can be made: snRNA1 approximately U2-snRNA; snRNA2 approximately U3-snRNA; snRNA3 approximately U4-snRNA; snRNA4 approximately U6-snRNA. The snRNAs injected into Axolotl oocytes move into the nuclei, where they are protected from degradation. The genes coding for these snRNAs have been localized by "in situ" hybridization of 125-I-snRNAs to salivary gland chromosomes. Most of the snRNAs hybridize to different regions of the genome: snRNA1 to the cytological regions 39B and 40AB; snRNA2 to 22A, 82E, and 95C; snRNA3 to 14B, 23D, 34A, 35EF, 39B, and 63A; snRNA4 to 96A. The estimated gene numbers (Southern-blot analysis) are: snRNA1:3; snRNA2:7; snRNA3:7; snRNA4:1-3. The gene numbers correspond to the number of sites labeled on the polytene salivary gland chromosomes.  相似文献   
124.
125.
126.
A cyclic metabolic pathway was obtained when 3,5-di-t-butyl-4-hydroxytoluene (BHT) was incubated with a rat liver microsomal preparation. The pathway is as follows: BHT --> 4-hydroperoxy-4-methyl-2,6-di-t-butylcyclohexa-2,5-dienone (BHT-OOH) --> 4-hydroxy-4-methyl-2,6-di-t-butylcyclohexa-2,5-dienone (BHT-3(0)OH) --> BHT. This metabolic pathway suggests that antioxidants such as BHT owe their high efficacy, at least in part, to their metabolic regeneration.  相似文献   
127.
128.
129.
130.
Flow through thin-wall axisymmetric tubes has long been of interest to physiologists. Analysis is complicated by the fact that such tubes will collapse when the transmural pressure (internal minus external pressure) is near zero. Because of the absence of any body of related knowledge in other sciences or engineering, previous workers have directed their efforts towards experimental studies of flow in collapsible tubes. More recently, some attention has been given towards analytical studies. Results of an extensive series of experiments show that the significant system parameter is transmural pressure. The cross-sectional area of the tube depends upon the transmural pressure, and changes in cross-section in turn affect the flow geometry. Based on experimental studies, a lumped parameter system model is proposed for the collapsible tube. The mathematical model is simulated on a hybrid computer. Experimental data were used to define the functional relationship between cross-sectional area and transmural pressure as well as the relation between the energy loss coefficient and cross-sectional area. Computer results confirm the validity of the model for both steady and transient flow conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号