首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38166篇
  免费   3280篇
  国内免费   3663篇
  2024年   72篇
  2023年   443篇
  2022年   874篇
  2021年   1802篇
  2020年   1270篇
  2019年   1576篇
  2018年   1498篇
  2017年   1160篇
  2016年   1647篇
  2015年   2349篇
  2014年   2810篇
  2013年   2985篇
  2012年   3546篇
  2011年   3153篇
  2010年   2093篇
  2009年   1698篇
  2008年   2184篇
  2007年   1904篇
  2006年   1712篇
  2005年   1537篇
  2004年   1316篇
  2003年   1164篇
  2002年   1053篇
  2001年   730篇
  2000年   566篇
  1999年   590篇
  1998年   399篇
  1997年   332篇
  1996年   339篇
  1995年   265篇
  1994年   298篇
  1993年   186篇
  1992年   254篇
  1991年   213篇
  1990年   195篇
  1989年   134篇
  1988年   104篇
  1987年   85篇
  1986年   55篇
  1985年   72篇
  1984年   57篇
  1983年   47篇
  1982年   46篇
  1981年   31篇
  1980年   21篇
  1979年   33篇
  1978年   19篇
  1976年   19篇
  1975年   17篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
What determines the rate at which species adapt to new climatic conditions? Weaver et al. found that the evolution of short larval periods promotes climatic niche evolution in salamanders in the genus Desmognathus.  相似文献   
22.
23.
Cellulases are the key enzymes used in the biofuel industry. A typical cellulase contains a catalytic domain connected to a carbohydrate-binding module (CBM) through a flexible linker. Here we report the structure of an atypical trimodular cellulase which harbors a catalytic domain, a CBM46 domain and a rigid CBM_X domain between them. The catalytic domain shows the features of GH5 family, while the CBM46 domain has a sandwich-like structure. The catalytic domain and the CBM46 domain form an extended substrate binding cleft, within which several tryptophan residues are well exposed. Mutagenesis assays indicate that these residues are essential for the enzymatic activities. Gel affinity electrophoresis shows that these tryptophan residues are involved in the polysaccharide substrate binding. Also, electrostatic potential analysis indicates that almost the entire solvent accessible surface of CelB is negatively charged, which is consistent with the halophilic nature of this enzyme.  相似文献   
24.
25.
26.
27.
28.
Aim Data and analyses of elevational gradients in diversity have been central to the development and evaluation of a range of general theories of biodiversity. Elevational diversity patterns have, however, been severely understudied for microbes, which often represent decomposer subsystems. Consequently, generalities in the patterns of elevational diversity across different trophic levels remain poorly understood. Our aim was to examine elevational gradients in the diversity of macroinvertebrates, diatoms and bacteria along a stony stream that covered a large elevational gradient. Location Laojun Mountain, Yunnan province, China. Methods The sampling scheme included 26 sites spaced at elevational intervals of 89 m from 1820 to 4050 m elevation along a stony stream. Macroinvertebrate and diatom richness were determined based on the morphology of the specimens. Taxonomic richness for bacteria was quantified using a molecular fingerprinting method. Over 50 environmental variables were measured at each site to quantify environmental variables that could correlate with the patterns of diversity. We used eigenvector‐based spatial filters with multiple regressions to account for spatial autocorrelation. Results The bacterial richness followed an unexpected monotonic increase with elevation. Diatoms decreased monotonically, and macroinvertebrate richness showed a clear unimodal pattern with elevation. The unimodal richness pattern for macroinvertebrates was best explained by the mid‐domain effect (r2 = 0.72). The diatom richness was best explained by the variation in nutrient supply, and the increase in bacterial richness with elevation may be related to an increased carbon supply. Main conclusions We found contrasting patterns in elevational diversity among the three studied multi‐trophic groups comprising unicellular and multicellular aquatic taxa. We also found that there may be fundamental differences in the mechanisms underlying these species diversity patterns.  相似文献   
29.
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α‐ketoglutarate (α‐KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α‐KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α‐KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α‐KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down‐regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α‐KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.  相似文献   
30.
The human milk microbiome is vertically transmitted to offspring during the postnatal period and has emerged as a critical driver of infant immune and metabolic development. Despite this importance in humans, the milk microbiome of nonhuman primates remains largely unexplored. This dearth of comparative work precludes our ability to understand how species‐specific differences in the milk microbiome may differentially drive maternal effects and limits how translational models can be used to understand the role of vertically transmitted milk microbes in human development. Here, we present the first culture‐independent data on the milk microbiome of a nonhuman primate. We collected milk and matched fecal microbiome samples at early and late lactation from a cohort of captive lactating vervet monkeys (N = 15). We found that, similar to humans, the vervet monkey milk microbiome comprises a shared community of taxa that are universally present across individuals. However, unlike in humans, this shared community is dominated by the genera Lactobacillus, Bacteroides, and Prevotella. We also found that, in contrast to previous culture‐dependent studies in humans, the vervet milk microbiome exhibits greater alpha‐diversity than the gut microbiome across lactation. Finally, we did not find support for the translocation of microbes from the gut to the mammary gland within females (i.e., “entero‐mammary pathway”). Taken together, our results show that the vervet monkey milk microbiome is taxonomically diverse, distinct from the gut microbiome, and largely stable. These findings demonstrate that the milk microbiome is a unique substrate that may selectively favor the establishment and persistence of particular microbes across lactation and highlights the need for future experimental studies on the origin of microbes in milk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号