首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25542篇
  免费   2111篇
  国内免费   2092篇
  29745篇
  2024年   66篇
  2023年   352篇
  2022年   804篇
  2021年   1334篇
  2020年   866篇
  2019年   1057篇
  2018年   1004篇
  2017年   742篇
  2016年   1054篇
  2015年   1554篇
  2014年   1832篇
  2013年   1937篇
  2012年   2365篇
  2011年   2024篇
  2010年   1288篇
  2009年   1024篇
  2008年   1394篇
  2007年   1167篇
  2006年   1056篇
  2005年   898篇
  2004年   749篇
  2003年   640篇
  2002年   581篇
  2001年   491篇
  2000年   378篇
  1999年   431篇
  1998年   256篇
  1997年   218篇
  1996年   255篇
  1995年   205篇
  1994年   252篇
  1993年   152篇
  1992年   220篇
  1991年   183篇
  1990年   174篇
  1989年   113篇
  1988年   83篇
  1987年   75篇
  1986年   49篇
  1985年   63篇
  1984年   48篇
  1983年   39篇
  1982年   37篇
  1981年   24篇
  1980年   16篇
  1979年   25篇
  1977年   15篇
  1976年   16篇
  1975年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Although successful production of fatty alcohols in metabolically engineered Escherichia coli with heterologous expression of fatty acyl-CoA reductase has been reported, low biosynthetic efficiency is still a hurdle to be overcome. In this study, we examined the characteristics of two fatty acyl-CoA reductases encoded by Maqu_2220 and Maqu_2507 genes from Marinobacter aquaeolei VT8 on fatty alcohol production in E. coli. Fatty alcohols with diversified carbon chain length were obtained by co-expressing Maqu_2220 with different carbon chain length-specific acyl-ACP thioesterases. Both fatty acyl-CoA reductases displayed broad substrate specificities for C12–C18 fatty acyl chains in vivo. The optimized mutant strain of E. coli carrying the modified tesA gene and fadD gene from E. coli and Maqu_2220 gene from Marinobacter aquaeolei VT8 produced fatty alcohols at a remarkable level of 1.725 g/L under the fermentation condition.  相似文献   
992.
Cytophaga hutchinsonii is an aerobic cellulolytic gliding bacterium. The mechanism of its cell motility over surfaces without flagella and type IV pili is not known. In this study, mariner-based transposon mutagenesis was used to identify a new locus CHU_1797 essential for colony spreading on both hard and soft agar surfaces through gliding. CHU_1797 encodes a putative outer membrane protein of 348 amino acids with unknown function, and proteins which have high sequence similarity to CHU_1797 were widespread in the members of the phylum Bacteroidetes. The disruption of CHU_1797 suppressed spreading toward glucose on an agar surface, but had no significant effect on cellulose degradation for cells already in contact with cellulose. SEM observation showed that the mutant cells also regularly arranged on the surface of cellulose fiber similar with that of the wild type strain. These results indicated that the colony spreading ability on agar surfaces was not required for cellulose degradation by C. hutchinsonii. This was the first study focused on the relationship between cell motility and cellulose degradation of C. hutchinsonii.  相似文献   
993.
Soy sauce is a traditional condiment manufactured by natural inoculation and mixed culture fermentation. As is well known, it is the microbial community that plays an important role in the formation of its flavors. However, to date, its dynamic changes during the long period of fermentation process are still unclear, intensively constraining the improvement and control of the soy sauce quality. In this work, we revealed the dynamic changes of the microbial community by combining a cultured dependent method and a cultured independent method of polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis. Results indicated that the two methods verified and complemented each other in profiling microbial community, and that significant dynamics of the microbial community existed during the fermentation process, especially the strong inhibition of the growth of most of the microbes when entering into the mash stage from the koji stage. In the analysis of bacterial community, Staphylococcus and Bacillus were found to be the dominant bacteria and detected in the whole fermentation process. Kurthia and Klebsiella began to appear in the koji stage and then fade away in the early stage of the mash fermentation. In the analysis of fungal community, Aspergillus sojae and Zygosaccharomyces rouxii were found to be the dominant fungi in the koji and mash fermentation, respectively. It was clearly shown that when A. sojae decreased and disappeared in the middle stage of the mash fermentation, Z. rouxii appeared and increased at the meantime. Aspergillus parasiticus, Trichosporon ovoides and Trichosporon asahii also appeared in the koji and the early period of the mash fermentation and disappeared thereafter. Similar to Z. rouxii, Millerozyma farinosa and Peronospora farinosa were also found spontaneously which appeared in the mid-late period of the mash fermentation. The principal component analysis suggested that the microbial community underwent significant changes in the early period of the fermentation and, thereafter, tended to the stabilization in the mid-late periods. This study gave us important clues to understand the fermentation process and can serve as a foundation for improving the quality of soy sauce in the future.  相似文献   
994.
Mycobacterium abscessus is an important hospital-acquired pathogen involved in infections associated with medical, surgical, and biopharmaceutical materials. In this work, we investigated the pressure-induced inactivation of two strains [2544 and American Type Culture Collection (ATCC) 19977] of M. abscessus in combination with different temperatures and pH conditions. For strain 2544, exposure to 250 MPa for 90 min did not significantly inactivate the bacteria at 20 °C, whereas at ?15 °C, there was complete inactivation. Exposure to 250 MPa at ≥60 °C caused rapid inactivation, with no viable bacteria after 45 min. With 45 min of exposure, there were no viable bacteria at any temperature when a higher pressure (350 MPa) was used. Extremes of pH (4 or 9) also markedly enhanced the pressure-induced inactivation of bacteria at 250 MPa, with complete inactivation after 45 min. In comparison, exposure of this strain to the disinfecting agent glutaraldehyde (0.5 %) resulted in total inactivation within 5 min. Strain 19977 was more sensitive to high pressure but less sensitive to glutaraldehyde than strain 2544. These results indicate that high hydrostatic pressure in combination with other physical parameters may be useful in reducing the mycobacterial contamination of medical materials and pharmaceuticals that are sensitive to autoclaving.  相似文献   
995.
A novel β-mannanase gene, man5XZ7, was cloned from thermophilic fungus Thielavia arenaria XZ7, and successfully expressed in Pichia pastoris. The gene (1,110 bp) encodes a 369-amino acid polypeptide with a molecular mass of approximately 40.8 kDa. The deduced sequence of Man5XZ7 consists of a putative 17-residue signal peptide and a catalytic module belonging to glycoside hydrolase (GH) family 5, and displays 76 % identity with the experimentally verified GH 5 endo-β-1,4-mannanase from Podospora anserina. Recombinant Man5XZ7 was optimally active at 75 °C and pH?5.0 and exhibited high activity at a wide temperature range (>50.0 % activity at 50–85 °C). Moreover, it had good adaptability to acidic to basic pH (>74.1 % activity at pH?4.0–7.0 and 25.6 % even at pH?9.0) and good stability from pH?3.0 to 10.0. These enzymatic properties showed that Man5XZ7 was a new thermophilic and alkali-tolerant β-mannanase. Further amino acid composition analysis indicated that Man5XZ7 has several characteristic features of thermophilic enzymes.  相似文献   
996.
997.
The group 1 pathogenesis-related (PR-1) proteins have long been considered hallmarks of hypersensitive response/defense pathways in plants, but their biochemical functions are still obscure despite resolution of the NMR/X-ray structures of several PR-1-like proteins, including P14a (the prototype PR-1). We report here the characterization of two basic PR-1 proteins (PR-1-1 and PR-1-5) recently identified from hexaploid wheat (Triticum aestivum). Both proteins were expressed in Pichia pastoris as a single major species of ∼15 kDa. Sequence identity of the expressed PR-1 proteins was verified by MALDI-TOF/TOF analysis. Accumulation of the native PR-1-5 protein in pathogen-challenged wheat was confirmed by protein gel blot analysis. Low-temperature SDS-PAGE and yeast two-hybrid assays revealed that PR-1-1 exists primarily as a monomer whereas PR-1-5 forms homodimers. Both PR-1 proteins are resistant to proteases compared to bovine serum albumin, but PR-1-1 shows resistance mainly to subtilisin and protease K (serine proteases) whereas PR-1-5 shows resistance to subtilisin, protease K and papain (a cysteine protease). Site-specific mutations at the five putative active sites in the PR-1 domain all affected dimerization, with the mutations at Glu-72 and Glu-102 (in the PR-1-5 numeration) also diminishing protease resistance. Sequence analysis revealed that the Glu-72 and Glu-102 residues are located in motif-like sequences that are conserved in both PR-1 and the human apoptosis-related caspase proteins. These findings prompt us to examine the function of PR-1 for a role in protease-mediated programmed cell death pathways in plants.  相似文献   
998.
The tiller of rice (Oryza sativa L.), which determines the panicle number per plant, is an important agronomic trait for grain production. Ascorbic acid (Asc) is a major plant antioxidant that serves many functions in plants. l-Galactono-1,4-lactone dehydrogenase (GLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Here we show that the GLDH-suppressed transgenic rices, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf Asc content compared with the wild-type plants, exhibit a significantly reduced tiller number. Moreover, lower growth rate and plant height were observed in the Asc-deficient plants relative to the trait values of the wild-type plants at different tillering stages. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation, a loss of chlorophyll, a loss of carotenoids, and a lower rate of CO2 assimilation. In addition, the level of abscisic acid was higher in GI-1 plants, while the level of jasmonic acid was higher in GI-1 and GI-2 plants at different tillering stages. The results we presented here indicated that Asc deficiency was likely responsible for the promotion of premature senescence, which was accompanied by a marked decrease in photosynthesis. These observations support the conclusion that the deficiency of Asc alters the tiller number in the GLDH-suppressed transgenics through promoting premature senescence and changing phytohormones related to senescence.  相似文献   
999.
This study revealed that CWR22Rv-1 cells overexpressing δ-catenin display bigger tumor formation and higher angiogenic potentials than their matched control cells in the CAM assay. In addition, δ-catenin overexpression in CWR22Rv-1 cells results in increased hypoxia-inducible factor 1-alpha (HIF-1α and vascular endothelial growth factor (VEGF) expression. Furthermore, δ-catenin overexpression was found to enhance nuclear distribution of both β-catenin and HIF-1α in hypoxic condition, which is diminished by knockdown of δ-catenin. Our current study adds novel evidence regarding contribution of δ-catenin to the progression of prostate cancer.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号