首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25260篇
  免费   2113篇
  国内免费   2060篇
  2024年   45篇
  2023年   310篇
  2022年   606篇
  2021年   1320篇
  2020年   864篇
  2019年   1053篇
  2018年   999篇
  2017年   739篇
  2016年   1054篇
  2015年   1554篇
  2014年   1829篇
  2013年   1933篇
  2012年   2363篇
  2011年   2022篇
  2010年   1284篇
  2009年   1025篇
  2008年   1392篇
  2007年   1166篇
  2006年   1054篇
  2005年   897篇
  2004年   745篇
  2003年   636篇
  2002年   581篇
  2001年   490篇
  2000年   378篇
  1999年   430篇
  1998年   256篇
  1997年   220篇
  1996年   255篇
  1995年   206篇
  1994年   252篇
  1993年   152篇
  1992年   220篇
  1991年   183篇
  1990年   174篇
  1989年   113篇
  1988年   84篇
  1987年   75篇
  1986年   49篇
  1985年   63篇
  1984年   48篇
  1983年   39篇
  1982年   37篇
  1981年   24篇
  1980年   17篇
  1979年   25篇
  1977年   17篇
  1976年   16篇
  1975年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
ObjectiveTo assess the benefits of regular exercise in reducing harms associated with betel quid (BQ) chewing.MethodsThe study cohort, 419,378 individuals, participated in a medical screening program between 1994 and 2008, with 38,324 male and 1,495 female chewers, who consumed 5–15 quids of BQ a day. Physical activity of each individual, based on “MET-hour/week”, was classified as “inactive” or “active”, where activity started from a daily 15 minutes/day or more of brisk walking (≥3.75 MET-hour/week). Hazard ratios for mortality and remaining years in life expectancy were calculated.ResultsNearly one fifth (18.7%) of men, but only 0.7% of women were chewers. Chewers had a 10-fold increase in oral cancer risk; and a 2-3-fold increase in mortality from lung, esophagus and liver cancer, cardiovascular disease, and diabetes, with doubling of all-cause mortality. More than half of chewers were physically inactive (59%). Physical activity was beneficial for chewers, with a reduction of all-cause mortality by 19%. Inactive chewers had their lifespan shortened by 6.3 years, compared to non-chewers, but being active, chewers improved their health by gaining 2.5 years. The improvement, however, fell short of offsetting the harms from chewing.ConclusionsChewers had serious health consequences, but being physically active, chewers could mitigate some of these adverse effects, and extend life expectancy by 2.5 years and reduce mortality by one fifth. Encouraging exercise, in addition to quitting chewing, remains the best advice for 1.5 million chewers in Taiwan.  相似文献   
992.
Jasmonic acid(JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase(JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate(Me JA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene,Os JMT1, whose encoding protein was localized in the cytosol, we found that the recombinant Os JMT1 protein catalyzed JA to Me JA. Os JMT1 is up-regulated in response to infestation with the brown planthopper(BPH; Nilaparvata lugens). Plants in which Os JMT1 had been overexpressed(oeJMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased Me JA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine(JAIle). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs,probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H_2O_2 and Me JA in oe-JMT plants. These results indicate that Os JMT1,by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.  相似文献   
993.
994.
995.
996.
The derivatives of 1,4‐dimethoxybenzene are thus far the best performing redox shuttle additives for overcharge protection of Li‐ion batteries. The most durable molecules of this kind typically possess two in‐plane methoxy groups that are equivalent by inversion symmetry. However, such geometry leads to a vanishing average dipole moment that causes poor solubility of these molecules in carbonate‐based electrolytes. In this study, a novel redox shuttle additive, 1,2,3,4‐tetrahydro‐6,7‐dimethoxy‐1,1,4,4‐tetramethyl‐naphthalene (TDTN), is introduced. It has been demonstrated that reversible oxidation at 4.05 V versus Li+/Li, high polarity, high solubility (around 0.4 m ), and excellent electrochemical stability (150 overcharge cycles at C/2 rate with 100% overcharge) can all be achieved simultaneously by the imposition of axial symmetry in the corresponding radical cation that is generated by electrochemical oxidation of TDTN in the battery. The intricate interplay between the symmetry and the chemical stability of the radical cation is scrutinized using magnetic resonance spectroscopy and electron structure modeling.  相似文献   
997.
The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.  相似文献   
998.
Bimolecular recombination in bulk heterojunction organic solar cells is the process by which nongeminate photogenerated free carriers encounter each other, and combine to form a charge transfer (CT) state which subsequently relaxes to the ground state. It is governed by the diffusion of the slower and faster carriers toward the electron donor–acceptor interface. In an increasing number of systems, the recombination rate constant is measured to be lower than that predicted by Langevin's model for relative Brownian motion and the capture of opposite charges. This study investigates the dynamics of charge generation, transport, and recombination in a nematic liquid crystalline donor:fullerene acceptor system that gives solar cells with initial power conversion efficiencies of >9.5%. Unusually, and advantageously from a manufacturing perspective, these efficiencies are maintained in junctions thicker than 300 nm. Despite finding imbalanced and moderate carrier mobilities in this blend, strongly suppressed bimolecular recombination is observed, which is ≈150 times less than predicted by Langevin theory, or indeed, more recent and advanced models that take into account the domain size and the spatial separation of electrons and holes. The suppressed bimolecular recombination arises from the fact that ground‐state decay of the CT state is significantly slower than dissociation.  相似文献   
999.
A new concept of multiple redox semi‐solid‐liquid (MRSSL) flow battery that takes advantage of active materials in both liquid and solid phases, is proposed and demonstrated. Liquid lithium iodide (LiI) electrolyte and solid sulfur/carbon (S/C) composite, forming LiI‐S/C MRSSL catholyte, are employed to demonstrate this concept. Record volumetric capacity (550 Ah L?1catholyte) is achieved using highly concentrated and synergistic multiple redox reactions of LiI and sulfur. The liquid LiI electrolyte is found to increase the reversible volumetric capacity of the catholyte, improve the electrochemical utilization of the S/C composite, and reduce the viscosity of catholyte. A continuous flow test is demonstrated and the influence of the flow rate on the flow battery performance is discussed. The MRSSL flow battery concept transforms inactive component into bi‐functional active species and creates synergistic interactions between multiple redox couples, offering a new direction and wide‐open opportunities to develop high‐energy‐density flow batteries.  相似文献   
1000.

Background

Monoacylglycerol lipase (MAGL), a critical lipolytic enzyme, has emerged as a key regulator of tumor progression, yet its biological function and clinical significance in hepatocellular carcinoma (HCC) is still unknown.

Methods

In this study, we used a tissue microarray containing samples from 170 HCC patients to evaluate the expression of MAGL and its correlation with other clinicopathologic characteristics. In addition, we investigated the regulating effects of MAGL on various HCC lines. Finally, we identified the NF-κB signaling pathway participated in MAGL-mediated epithelial-mesenchymal transition (EMT) using HCC cell lines with different metastatic potentials.

Results

The expression of MAGL was significantly higher in HCC tumors than in matched peritumor tissues. Specifically, high MAGL expression was found in tumors with larger tumor size, microvascular invasion, poor differentiation, or advanced TNM stage. In addition, the clinical prognosis for the MAGLhigh group was markedly poorer than that for the MAGLlow group in the 1-, 3-, and 5-year overall survival times and recurrence rates of HCC patients. MAGL expression was an independent prognostic factor for both survival and recurrence after curative resection. Furthermore, the upregulation of MAGL in HCC cells promoted cell growth and invasiveness abilities, and accompanied by EMT. In contrast, downregulation of MAGL obviously inhibited these characteristics. Moreover, further investigations verified that MAGL facilitates HCC progression via NF-κB-mediated EMT process.

Conclusions

Our findings demonstrate MAGL could promote HCC progression by the induction of EMT and suggest a potential therapeutic target, as well as a biomarker for prognosis, in patients with HCC.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号