全文获取类型
收费全文 | 25488篇 |
免费 | 2114篇 |
国内免费 | 2110篇 |
专业分类
29712篇 |
出版年
2024年 | 66篇 |
2023年 | 351篇 |
2022年 | 802篇 |
2021年 | 1330篇 |
2020年 | 867篇 |
2019年 | 1056篇 |
2018年 | 1001篇 |
2017年 | 742篇 |
2016年 | 1054篇 |
2015年 | 1553篇 |
2014年 | 1830篇 |
2013年 | 1933篇 |
2012年 | 2364篇 |
2011年 | 2023篇 |
2010年 | 1284篇 |
2009年 | 1024篇 |
2008年 | 1392篇 |
2007年 | 1168篇 |
2006年 | 1058篇 |
2005年 | 898篇 |
2004年 | 745篇 |
2003年 | 636篇 |
2002年 | 580篇 |
2001年 | 490篇 |
2000年 | 379篇 |
1999年 | 430篇 |
1998年 | 255篇 |
1997年 | 218篇 |
1996年 | 255篇 |
1995年 | 205篇 |
1994年 | 252篇 |
1993年 | 152篇 |
1992年 | 220篇 |
1991年 | 183篇 |
1990年 | 174篇 |
1989年 | 113篇 |
1988年 | 83篇 |
1987年 | 75篇 |
1986年 | 49篇 |
1985年 | 63篇 |
1984年 | 48篇 |
1983年 | 39篇 |
1982年 | 37篇 |
1981年 | 24篇 |
1980年 | 16篇 |
1979年 | 25篇 |
1977年 | 15篇 |
1976年 | 16篇 |
1975年 | 15篇 |
1973年 | 17篇 |
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
51.
MicroRNA (miR) plays an integral role in cardiovascular diseases. M-iR-423-5p is aberrantly expressed in patients with myocardial infarction and heart failure. The aim of the present study was to study the roles and mechanisms of miR-423-5p in hypoxia/reoxygenation (H/R) mediated cardiomyocytes injury. H9C2 cells were transfected with negative control, miR-423-5p mimic, and inhibitor for 48 hr, followed by exposed to H/R condition. Cell apoptosis rate, caspase 3/7 activities, Bax and cleaved-caspase 3 (c-caspase 3) protein levels were assayed by flow cytometry, Caspase-Glo 3/7 Assay kit, western blot analysis, respectively. Furthermore, the mitochondrial membrane potential, adenosine triphosphate (ATP) content, reactive oxygen species (ROS) production, and Drp1 expression were also investigated. Furthermore, the dual-luciferase reporter assay was used to evaluate the relationship between miR-423-5p and Myb-related protein B (MYBL2). The roles of miR-423-5p in wnt/β-catenin were assessed by western blot analysis. The results revealed that H/R triggered miR-423-5p expression. Overexpression of miR-423-5p promoted cardiomyocyte apoptosis, enhanced the activities of caspase 3/7, upregulated the expression of Bax and c-caspase 3. miR-423-5p upregulation caused the loss of mitochondrial membrane potential and the reduction of ATP content, the augment of ROS production and Drp1 expression. However, the opposite trends were observed upon suppression of miR-423-5p. In addition, miR-423-5p could target the 3′ untranslated region of MYBL2. miR-423-5p depletion led to the activation of the wnt/β-catenin signaling pathway via targeting MYBL2. Knockdown of MYBL2 was obviously reversed the roles of miR-423-5p in apoptosis and mitochondrial dysfunction. Taken together, miR-423-5p suppression reduced H/R-induced cardiomyocytes injury through activation of the wnt/β-catenin signaling pathway via targeting MYBL2 in cardiomyocytes. 相似文献
52.
Thomas H. Beckham Joseph C. Cheng Ping Lu S. Tucker Marrison James S. Norris Xiang Liu 《PloS one》2013,8(10)
The tumor suppressor PTEN is now understood to regulate cellular processes at the cytoplasmic membrane, where it classically regulates PI3K signaling, as well as in the nucleus where multiple roles in controlling cell cycle and genome stability have been elucidated. Mechanisms that dictate nuclear import and, less extensively, nuclear export of PTEN have been described, however the relevance of these processes in disease states, particularly cancer, remain largely unknown. We investigated the impact of acid ceramidase on the nuclear-cytoplasmic trafficking of PTEN. Immunohistochemical analysis of a human prostate tissue microarray revealed that nuclear PTEN was lost in patients whose tumors had elevated acid ceramidase. We found that acid ceramidase promotes a reduction in nuclear PTEN that is dependent upon sphingosine 1-phosphate-mediated activation of Akt. We were further able to show that sphingosine 1-phosphate promotes formation of a complex between Crm1 and PTEN, and that leptomycin B prevents acid ceramidase and sphingosine 1-phosphate mediated loss of nuclear PTEN, suggesting an active exportin-mediated event. To investigate whether the tumor promoting aspects of acid ceramidase in prostate cancer depend upon its ability to export PTEN from the nucleus, we used enforced nuclear expression of PTEN to study docetaxel-induced apoptosis and cell killing, proliferation, and xenoengraftment. Interestingly, while acid ceramidase was able to protect cells expressing wild type PTEN from docetaxel, promote proliferation and xenoengraftment, acid ceramidase had no impact in cells expressing PTEN-NLS. These findings suggest that acid ceramidase, through sphingosine 1-phosphate, promotes nuclear export of PTEN as a means of promoting tumor formation, cell proliferation, and resistance to therapy. 相似文献
53.
Wang ZX Xue D Liu ZL Lu BB Bian HB Pan X Yin YM 《The international journal of biochemistry & cell biology》2012,44(1):200-210
Polo-like kinase 1 is a serine/threonine kinase which plays an essential role in mitosis and malignant transformation. The aim of this study was to investigate the prognostic significance of polo-like kinase 1 expression and determine its possibility as a therapeutic target in non-small cell lung cancer. Semi-quantitative RT-PCR assay was performed to detect polo-like kinase 1 mRNA expression in non-small cell lung cancer cells or tissues. Immunohistochemistry was performed to detect polo-like kinase 1 protein expression in 100 non-small cell lung cancer tissue samples, and the associations of polo-like kinase 1 expression with clinicopathological factors or prognosis of non-small cell lung cancer patients were evaluated. RNA interference was employed to inhibit endogenous polo-like kinase 1 expression and analyzed the effects of polo-like kinase 1 inhibition on the malignant phenotypes of non-small cell lung cancer cells including growth, apoptosis, radio- or chemoresistance. Also, the possible molecular mechanisms were also investigated. The levels of polo-like kinase 1 mRNA expression in non-small cell lung cancer cell lines or tissues were significantly higher than those in normal human bronchial epithelial cell line or corresponding non-tumor tissues. High polo-like kinase 1 expression was significantly correlated with advanced clinical stage, higher tumor classification and lymph node metastasis of non-small cell lung cancer patients (P = 0.001, 0.004 and 0.001, respectively). Meanwhile, high polo-like kinase 1 protein expression was also an independent prognostic molecular marker for non-small cell lung cancer patients (hazard ratio: 2.113; 95% confidence interval: 1.326-3.557; P = 0.017). Polo-like kinase 1 inhibition could significantly inhibit in vitro and in vivo proliferation, induce cell arrest of G2/M phase and apoptosis enhancement in non-small cell lung cancer cells, which might be activation of the p53 pathway and the Cdc25C/cdc2/cyclin B1 feedback loop. Further, inhibition of polo-like kinase 1 could enhance the sensitivity of non-small cell lung cancer cells to taxanes or irradiation. Thus, polo-like kinase 1 might be a prognostic marker and a chemo- or radiotherapeutic target for non-small cell lung cancer. 相似文献
54.
Taurine transporter is expressed in vascular smooth muscle cells 总被引:2,自引:0,他引:2
Summary. The regulation of vascular smooth muscle cells (VSMCs) function by taurine has been a subject of increasing interest and investigation,
and taurine is taken up into cells through a specific transporter system, the taurine transporter (TAUT). In the present study,
we examined the expression of TAUT in VSMCs and the kinetic parameters of the uptake process of TAUT in VSMCs. RT-PCR and
western blot demonstrated that the mRNA and protein of TAUT was expressed in VSMCs in vitro. Immunohistochemistry using antibody
for TAUT revealed the expression of this protein in rat thoracic aorta. The maximal [3H]taurine uptake rate in VSMCs was 37.75 ± 3.13 pmol/min per mg of protein, with a K
m
value of 5.42 ± 0.81 μM. Thus, VSMCs are able to express a functional taurine transporter. The regulation and detailed function
of taurine and TAUT in VSMCs remain unclear, but our findings suggest a functional role for them in VSMCs metabolism. 相似文献
55.
Bark beetles are among the most destructive of pine forest pests and they form close symbiotic relationships with ophiostomatoid fungi. Although some fungi are considered to be mutualistic symbionts of bark beetles with respect to the supply of nutrients, detrimental effects of fungal symbionts on larval growth have also been frequently reported. The mechanisms of such antagonistic effects are hypothesized to be a decrease in nutritional resources caused by competition for saccharides by the fungi. Here, we provide experimental evidence that three beetle-associated fungi modify the nutritional content of an artificial phloem diet, leading to a detrimental effect on the growth of Dendroctonus valens larvae. When larvae were fed a diet of pine phloem in agar medium colonized with any of these fungi, feeding activity was not affected but weight significantly decreased. Additional analysis showed that fungi depleted the fructose and glucose concentrations in the phloem media. Furthermore, these detrimental effects were neutralized by supplementing the media with fructose or glucose, suggesting that fungi may affect larval growth by modifying diet saccharide contents. These data indicate that fungus-induced nutritional changes in bark beetle diet can affect larval growth, and that the mechanism involves fungus-induced saccharide depletion from the larval diet. 相似文献
56.
Chen Lu Zhongti Sun Lianghao Yu Xueyu Lian Yuyang Yi Jie Li Zhongfan Liu Shixue Dou Jingyu Sun 《Liver Transplantation》2020,10(28)
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications. 相似文献
57.
Zhi Qi Hong Lu Lin Li Xiaojuan Li Shuwen Liu 《Biochemical and biophysical research communications》2010,398(3):506-1133
HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. 相似文献
58.
59.
Matts RL Brandt GE Lu Y Dixit A Mollapour M Wang S Donnelly AC Neckers L Verkhivker G Blagg BS 《Bioorganic & medicinal chemistry》2011,19(1):684-692
Several Hsp90 modulators have been identified including the N-terminal ligand geldanamycin (GDA), the C-terminal ligand novobiocin (NB), and the co-chaperone disruptor celastrol. Other Hsp90 modulators elicit a mechanism of action that remains unknown. For example, the natural product gedunin and the synthetic anti-spermatogenic agent H2-gamendazole, recently identified Hsp90 modulators, manifest biological activity through undefined mechanisms. Herein, we report a series of biochemical techniques used to classify such modulators into identifiable categories. Such studies provided evidence that gedunin and H2-gamendazole both modulate Hsp90 via a mechanism similar to celastrol, and unlike NB or GDA. 相似文献
60.
Kalinchuk AV Lu Y Stenberg D Rosenberg PA Porkka-Heiskanen T 《Journal of neurochemistry》2006,99(2):483-498
Sleep homeostasis is the process by which recovery sleep is generated by prolonged wakefulness. The molecular mechanisms underlying this important phenomenon are poorly understood. Here, we assessed the role of the intercellular gaseous signaling agent NO in sleep homeostasis. We measured the concentration of nitrite and nitrate, indicative of NO production, in the basal forebrain (BF) of rats during sleep deprivation (SD), and found the level increased by 100 +/- 51%. To test whether an increase in NO production might play a causal role in recovery sleep, we administered compounds into the BF that increase or decrease concentrations of NO. Infusion of either a NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, or a NO synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), completely abolished non-rapid eye movement (NREM) recovery sleep. Infusion of a NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2diolate (DETA/NO), produced an increase in NREM that closely resembled NREM recovery after prolonged wakefulness. The effects of inhibition of NO synthesis and the pharmacological induction of sleep were effective only in the BF area. Indicators of energy metabolism, adenosine, lactate and pyruvate increased during prolonged wakefulness and DETA/NO infusion, whereas L-NAME infusion during SD prevented the increases. We conclude that an increase in NO production in the BF is a causal event in the induction of recovery sleep. 相似文献