全文获取类型
收费全文 | 25520篇 |
免费 | 2109篇 |
国内免费 | 2099篇 |
专业分类
29728篇 |
出版年
2024年 | 67篇 |
2023年 | 351篇 |
2022年 | 802篇 |
2021年 | 1332篇 |
2020年 | 866篇 |
2019年 | 1056篇 |
2018年 | 1002篇 |
2017年 | 743篇 |
2016年 | 1055篇 |
2015年 | 1553篇 |
2014年 | 1831篇 |
2013年 | 1935篇 |
2012年 | 2364篇 |
2011年 | 2025篇 |
2010年 | 1284篇 |
2009年 | 1024篇 |
2008年 | 1393篇 |
2007年 | 1166篇 |
2006年 | 1055篇 |
2005年 | 897篇 |
2004年 | 745篇 |
2003年 | 636篇 |
2002年 | 582篇 |
2001年 | 490篇 |
2000年 | 379篇 |
1999年 | 430篇 |
1998年 | 257篇 |
1997年 | 220篇 |
1996年 | 257篇 |
1995年 | 205篇 |
1994年 | 252篇 |
1993年 | 153篇 |
1992年 | 221篇 |
1991年 | 183篇 |
1990年 | 174篇 |
1989年 | 113篇 |
1988年 | 83篇 |
1987年 | 75篇 |
1986年 | 49篇 |
1985年 | 63篇 |
1984年 | 48篇 |
1983年 | 39篇 |
1982年 | 37篇 |
1981年 | 24篇 |
1980年 | 16篇 |
1979年 | 25篇 |
1977年 | 16篇 |
1976年 | 16篇 |
1975年 | 15篇 |
1973年 | 17篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Bark beetles are among the most destructive of pine forest pests and they form close symbiotic relationships with ophiostomatoid fungi. Although some fungi are considered to be mutualistic symbionts of bark beetles with respect to the supply of nutrients, detrimental effects of fungal symbionts on larval growth have also been frequently reported. The mechanisms of such antagonistic effects are hypothesized to be a decrease in nutritional resources caused by competition for saccharides by the fungi. Here, we provide experimental evidence that three beetle-associated fungi modify the nutritional content of an artificial phloem diet, leading to a detrimental effect on the growth of Dendroctonus valens larvae. When larvae were fed a diet of pine phloem in agar medium colonized with any of these fungi, feeding activity was not affected but weight significantly decreased. Additional analysis showed that fungi depleted the fructose and glucose concentrations in the phloem media. Furthermore, these detrimental effects were neutralized by supplementing the media with fructose or glucose, suggesting that fungi may affect larval growth by modifying diet saccharide contents. These data indicate that fungus-induced nutritional changes in bark beetle diet can affect larval growth, and that the mechanism involves fungus-induced saccharide depletion from the larval diet. 相似文献
82.
Chen Lu Zhongti Sun Lianghao Yu Xueyu Lian Yuyang Yi Jie Li Zhongfan Liu Shixue Dou Jingyu Sun 《Liver Transplantation》2020,10(28)
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications. 相似文献
83.
Zhi Qi Hong Lu Lin Li Xiaojuan Li Shuwen Liu 《Biochemical and biophysical research communications》2010,398(3):506-1133
HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. 相似文献
84.
85.
Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance 总被引:2,自引:0,他引:2
Deng W Luo K Li D Zheng X Wei X Smith W Thammina C Lu L Li Y Pei Y 《Journal of experimental botany》2006,57(15):4235-4243
Aluminium (Al) toxicity is the most important limiting factor for crop production in acid soil environments worldwide. In some plant species, application of magnesium (Mg(2+)) can alleviate Al toxicity. However, it remains unknown whether overexpression of magnesium transport proteins can improve Al tolerance. Here, the role of AtMGT1, a member of the Arabidopsis magnesium transport family involved in Mg(2+) transport, played in Al tolerance in higher plants was investigated. Expression of 35S::AtMGT1 led to various phenotypic alterations in Nicotiana benthamiana plants. Transgenic plants harbouring 35S::AtMGT1 exhibited tolerance to Mg(2+) deficiency. Element assay showed that the contents of Mg, Mn, and Fe in 35S::AtMGT1 plants increased compared with wild-type plants. Root growth experiment revealed that 100 microM AlCl(3) caused a reduction in root elongation by 47% in transgenic lines, whereas root growth in wild-type plants was inhibited completely. Upon Al treatment, representative transgenic lines also showed a much lower callose deposition, an indicator of increased Al tolerance, than wild-type plants. Taken together, the results have demonstrated that overexpression of ATMGT1 encoding a magnesium transport protein can improve tolerance to Al in higher plants. 相似文献
86.
Matts RL Brandt GE Lu Y Dixit A Mollapour M Wang S Donnelly AC Neckers L Verkhivker G Blagg BS 《Bioorganic & medicinal chemistry》2011,19(1):684-692
Several Hsp90 modulators have been identified including the N-terminal ligand geldanamycin (GDA), the C-terminal ligand novobiocin (NB), and the co-chaperone disruptor celastrol. Other Hsp90 modulators elicit a mechanism of action that remains unknown. For example, the natural product gedunin and the synthetic anti-spermatogenic agent H2-gamendazole, recently identified Hsp90 modulators, manifest biological activity through undefined mechanisms. Herein, we report a series of biochemical techniques used to classify such modulators into identifiable categories. Such studies provided evidence that gedunin and H2-gamendazole both modulate Hsp90 via a mechanism similar to celastrol, and unlike NB or GDA. 相似文献
87.
Kalinchuk AV Lu Y Stenberg D Rosenberg PA Porkka-Heiskanen T 《Journal of neurochemistry》2006,99(2):483-498
Sleep homeostasis is the process by which recovery sleep is generated by prolonged wakefulness. The molecular mechanisms underlying this important phenomenon are poorly understood. Here, we assessed the role of the intercellular gaseous signaling agent NO in sleep homeostasis. We measured the concentration of nitrite and nitrate, indicative of NO production, in the basal forebrain (BF) of rats during sleep deprivation (SD), and found the level increased by 100 +/- 51%. To test whether an increase in NO production might play a causal role in recovery sleep, we administered compounds into the BF that increase or decrease concentrations of NO. Infusion of either a NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, or a NO synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), completely abolished non-rapid eye movement (NREM) recovery sleep. Infusion of a NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2diolate (DETA/NO), produced an increase in NREM that closely resembled NREM recovery after prolonged wakefulness. The effects of inhibition of NO synthesis and the pharmacological induction of sleep were effective only in the BF area. Indicators of energy metabolism, adenosine, lactate and pyruvate increased during prolonged wakefulness and DETA/NO infusion, whereas L-NAME infusion during SD prevented the increases. We conclude that an increase in NO production in the BF is a causal event in the induction of recovery sleep. 相似文献
88.
Zhang JF Ma L Liu X Lu YT 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2004,804(2):413-420
A separation using capillary electrophoresis with laser-induced fluorescence (CE-LIF) was applied to the study of green fluorescent protein tagged calmoldulin (GFP-CaM) that was expressed from Escherichia coli and purified with Ni(2+)-nitrilotriacetate (Ni-NTA) resin column. It was found that GFP-CaM not only has good fluorescence properties under various conditions similar to GFP, but also retains its calcium-binding ability as the native CaM. GFP-CaM was separated and detected by CE-LIF within 10 min with a limit-of-detection (LOD) of 2 x 10(-10) M for an injection volume of 3 nl, higher than that of common chemical fluorescent-tagged protein method. The results indicated that, as a fluorescence probe, GFP could overcome the drawback of inefficient derivatization of chemical fluorescence probes. The interaction between the GFP-CaM and Ca(2+) was studied in detail using affinity capillary electrophoresis with laser-induced fluorescence and the dissociation constant (K(d)) between GFP-CaM and Ca(2+) was determined to be 1.2 x 10(-5), which is in good agreement with the literature values of untagged CaM (10(-6) to 10(-5)M) obtained by conventional method. As a preliminary application, the interaction between GFP-CaM and OsCBK was also investigated. The method makes it possible to screen the trace amounts of target proteins in crude extracts interacting with CaM under physiological conditions. 相似文献
89.
90.