首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25648篇
  免费   2113篇
  国内免费   2127篇
  29888篇
  2024年   66篇
  2023年   355篇
  2022年   810篇
  2021年   1337篇
  2020年   871篇
  2019年   1063篇
  2018年   1009篇
  2017年   747篇
  2016年   1061篇
  2015年   1570篇
  2014年   1847篇
  2013年   1951篇
  2012年   2379篇
  2011年   2040篇
  2010年   1292篇
  2009年   1029篇
  2008年   1395篇
  2007年   1169篇
  2006年   1058篇
  2005年   903篇
  2004年   751篇
  2003年   641篇
  2002年   582篇
  2001年   491篇
  2000年   379篇
  1999年   430篇
  1998年   257篇
  1997年   219篇
  1996年   255篇
  1995年   207篇
  1994年   252篇
  1993年   153篇
  1992年   220篇
  1991年   183篇
  1990年   174篇
  1989年   113篇
  1988年   83篇
  1987年   75篇
  1986年   49篇
  1985年   63篇
  1984年   48篇
  1983年   39篇
  1982年   37篇
  1981年   24篇
  1980年   16篇
  1979年   25篇
  1977年   15篇
  1976年   16篇
  1975年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
43.
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage.  相似文献   
44.
The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.  相似文献   
45.
The present criteria and rules controlling the approval of the use of probiotics are limited to antibiotic resistance patterns and the presence of antibiotic resistance genes in bacteria. There is little information available in the literature regarding the risk of the usage of probiotics in the presence of antibiotic pressure. In this study we investigated the development and transfer of antibiotic resistance in Bacillus subtilis selected in vitro by chlortetracycline in a stepwise manner. Bacillus subtilis was exposed to increasing concentrations of chlortetracyclineto induce in vitro resistance to chlortetracycline, and the minimal inhibitory concentrations were determinedfor the mutants. Resistant B. subtilis were conjugated with Escherichia coli NK5449 and Enterococcus faecalis JH2-2 using the filter mating. Three B. subtilis tetracycline resistant mutants (namely, BS-1, BS-2, and BS-3) were derived in vitro. A tetracycline resistant gene, tet (K), was found in the plasmids of BS-1 and BS-2. Three conjugates (BS-1N, BS-2N, and BS-3N) were obtained when the resistant B. subtilis was conjugated with E. coli NK5449. The conjugation frequencies for the BS-1N, BS-2N, and BS-3N conjugates were 4.57×10?7, 1.4×10?7, and 1.3×10?8, respectively. The tet(K) gene was found only in the plasmids of BS-1N. These results indicate that long-term use of probiotics under antibiotic selection pressure could cause antibiotic resistance, and the resistance gene could be transferred to other bacteria. The risk arising from the use of probiotics under antibiotic pressure should be considered in the criteria and rules for the safety assessment of probiotics.  相似文献   
46.
Essentially any behavior in simple and complex animals depends on neuronal network function. Currently, the best-defined system to study neuronal circuits is the nematode Caenorhabditis elegans, as the connectivity of its 302 neurons is exactly known. Individual neurons can be activated by photostimulation of Channelrhodopsin-2 (ChR2) using blue light, allowing to directly probe the importance of a particular neuron for the respective behavioral output of the network under study. In analogy, other excitable cells can be inhibited by expressing Halorhodopsin from Natronomonas pharaonis (NpHR) and subsequent illumination with yellow light. However, inhibiting C. elegans neurons using NpHR is difficult. Recently, proton pumps from various sources were established as valuable alternative hyperpolarizers. Here we show that archaerhodopsin-3 (Arch) from Halorubrum sodomense and a proton pump from the fungus Leptosphaeria maculans (Mac) can be utilized to effectively inhibit excitable cells in C. elegans. Arch is the most powerful hyperpolarizer when illuminated with yellow or green light while the action spectrum of Mac is more blue-shifted, as analyzed by light-evoked behaviors and electrophysiology. This allows these tools to be combined in various ways with ChR2 to analyze different subsets of neurons within a circuit. We exemplify this by means of the polymodal aversive sensory ASH neurons, and the downstream command interneurons to which ASH neurons signal to trigger a reversal followed by a directional turn. Photostimulating ASH and subsequently inhibiting command interneurons using two-color illumination of different body segments, allows investigating temporal aspects of signaling downstream of ASH.  相似文献   
47.
48.
Soluble microbial products (SMPs) are considered as the main organic components in wastewater treatment plant effluent from biological wastewater treatment systems. To investigate and explore SMP metabolism pathway for further treatment and control, two innovative mechanistically based activated sludge models were developed by extension of activated sludge model no.3 (ASM3). One was the model by combining SMP formation and degradation (ASM3-SMP model) processes with ASM3, and the other by combining both SMP and simultaneous substrate storage and growth (SSSG) mechanisms with ASM3 (SSSG-ASM3-SMP model). The detailed schematic modification and process supplements were introduced for comprehensively understanding all the mechanisms involved in the activated sludge process. The evaluations of these two models were demonstrated by a laboratory-scale sequencing batch reactor (SBR) operated under aerated/non-aerated conditions. The simulated and measured results indicated that SMP comprised about 83% of total soluble chemical oxygen demand (SCOD) in which biomass-associated products (BAPs) were predominant compared with utilization-associated products (UAPs). It also elucidated that there should be a minimum SMP value as the reactive time increases continuously and this conclusion could be used to optimize effluent SCOD in activated sludge processes. The comparative results among ASM3, ASM3-SMP and SSSG-ASM3-SMP models and the experimental measurements (SCOD, ammonia and nitrate nitrogen) showed clearly the best agreement with SSSG-ASM3-SMP simulation values (R = 0.993), strongly suggesting that both SMP formation and degradation and SSSG mechanisms are necessary in biologically activated sludge modeling for municipal wastewater treatment.  相似文献   
49.
Epidemiological data suggest that consumption of fruits and vegetables has been associated with a lower incidence of cancer. Cyanidin-3-glucoside (C3G), a compound found in blackberry and other food products, was shown to possess chemopreventive and chemotherapeutic activity in the present study. In cultured JB6 cells, C3G was able to scavenge ultraviolet B-induced *OH and O2-* radicals. In vivo studies indicated that C3G treatment decreased the number of non-malignant and malignant skin tumors per mouse induced by 12-O-tetradecanolyphorbol-13-acetate (TPA) in 7,12-dimethylbenz[a]anthracene-initiated mouse skin. Pretreatment of JB6 cells with C3G inhibited UVB- and TPA-induced transactivation of NF-kappaB and AP-1 and expression of cyclooxygenase-2 and tumor necrosis factor-alpha. These inhibitory effects appear to be mediated through the inhibition of MAPK activity. C3G also blocked TPA-induced neoplastic transformation in JB6 cells. In addition, C3G inhibited proliferation of a human lung carcinoma cell line, A549. Animal studies showed that C3G reduced the size of A549 tumor xenograft growth and significantly inhibited metastasis in nude mice. Mechanistic studies indicated that C3G inhibited migration and invasion of A549 tumor cells. These finding demonstrate for the first time that a purified compound of anthocyanin inhibits tumor promoter-induced carcinogenesis and tumor metastasis in vivo.  相似文献   
50.
A cDNA clone was isolated after difference screening from cotyledons of two-week cold-treated Ammopiptanthus mongolicus. The full-length cDNA sequence [designated as AmCIP (A. mongolicus cold-induced protein) gene] was 806 bp long and contained a 465 bp open reading frame (ORF) encoding a 16.6 kD protein of 154 amino acids. Bioinformatic analyses indicated that CIP belongs to dehydrin family with the features of high hydrophilicity, a helix K-segment, a long Gly-rich region and a phosphorylatable tract of Ser as well as deficiency in Cys and Trp. The expression of CIP gene increased after two weeks of cold treatment and more expression was detected in radicle than in cotyledon. And PCR amplification of the AmCIP gene from genome of A. mongolicus revealed this gene has no intron. Function prediction suggested this protein seems to protect the stabilization of membrane structure and prevent macromolecular coagulation or sequestrate calcium ions by association or disassociation with membrane under low temperature conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号