首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25556篇
  免费   2108篇
  国内免费   2101篇
  29765篇
  2024年   66篇
  2023年   351篇
  2022年   803篇
  2021年   1331篇
  2020年   866篇
  2019年   1057篇
  2018年   1003篇
  2017年   743篇
  2016年   1057篇
  2015年   1554篇
  2014年   1832篇
  2013年   1941篇
  2012年   2367篇
  2011年   2028篇
  2010年   1284篇
  2009年   1025篇
  2008年   1393篇
  2007年   1167篇
  2006年   1057篇
  2005年   900篇
  2004年   745篇
  2003年   637篇
  2002年   581篇
  2001年   490篇
  2000年   378篇
  1999年   430篇
  1998年   255篇
  1997年   218篇
  1996年   255篇
  1995年   205篇
  1994年   252篇
  1993年   152篇
  1992年   221篇
  1991年   184篇
  1990年   174篇
  1989年   113篇
  1988年   83篇
  1987年   76篇
  1986年   49篇
  1985年   63篇
  1984年   48篇
  1983年   40篇
  1982年   40篇
  1981年   24篇
  1980年   21篇
  1979年   32篇
  1978年   17篇
  1977年   17篇
  1976年   16篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
271.
Recombinant human keratinocyte growth factor-2 (rhKGF-2) has previously been expressed in Escherichia coli using isopropyl-β-d-thiogalactopyranoside (IPTG), a non-metabolizable and expensive compound, as the inducer. In order to determine whether IPTG could be replaced with the cheap and natural lactose to induce rhKGF-2 expression, we examined the expression of rhKGF-2 in flask culture and 30-l fermentation using lactose as the inducer. The optimized fermentation induced with lactose resulted in 1,382 g of cell mass, corresponding to a 84% enhancement in cell mass compared with IPTG induction. While the expression level of rhKGF-2 induced with lactose was comparable to that induced with IPTG, the solubility of target protein was increased by lactose induction than by IPTG induction. The recombinant protein was further purified by cation exchange and heparin-affinity chromatography. 255 milligrams of pure rhKGF-2 was achieved per liter culture by lactose induction, 52% higher than that obtained by IPTG induction. A preliminary biochemical characterization of purified rhKGF-2 was performed by Western blotting and mitogenic activity analysis, and the results demonstrated that the purified lactose-induced rhKGF-2 could react with anti-human KGF-2 antibody and stimulate the proliferation of FGFR2-IIIb-transfected mouse BaF3 cells as IPTG-induced rhKGF-2 could do.  相似文献   
272.
273.
The N-terminal domains of cardiac myosin binding protein C (MyBP-C) play a regulatory role in modulating interactions between myosin and actin during heart muscle contraction. Using NMR spectroscopy and small-angle neutron scattering, we have determined specific details of the interaction between the two-module human C0C1 cMyBP-C fragment and F-actin. The small-angle neutron scattering data show that C0C1 spontaneously polymerizes monomeric actin (G-actin) to form regular assemblies composed of filamentous actin (F-actin) cores decorated by C0C1, similar to what was reported in our earlier four-module mouse cMyBP-C actin study. In addition, NMR titration analyses show large intensity changes for a subset of C0C1 peaks upon addition of G-actin, indicating that human C0C1 interacts specifically with actin and promotes its assembly into filaments. During the NMR titration, peaks corresponding to cardiac-specific C0 domain are the first to be affected, followed by those from the C1 domain. No peak intensity or position changes were detected for peaks arising from the disordered proline/alanine-rich (P/A) linker connecting C0 with C1, despite previous suggestions of its involvement in binding actin. Of considerable interest is the observation that the actin-interaction “hot-spots” within the C0 and C1 domains, revealed in our NMR study, overlap with regions previously identified as binding to the regulatory light chain of myosin and to myosin ΔS2. Our results suggest that C0 and C1 interact with myosin and actin using a common set of binding determinants and therefore support a cMyBP-C switching mechanism between myosin and actin.  相似文献   
274.
A complete set of nearest neighbor parameters to predict the enthalpy change of RNA secondary structure formation was derived. These parameters can be used with available free energy nearest neighbor parameters to extend the secondary structure prediction of RNA sequences to temperatures other than 37°C. The parameters were tested by predicting the secondary structures of sequences with known secondary structure that are from organisms with known optimal growth temperatures. Compared with the previous set of enthalpy nearest neighbor parameters, the sensitivity of base pair prediction improved from 65.2 to 68.9% at optimal growth temperatures ranging from 10 to 60°C. Base pair probabilities were predicted with a partition function and the positive predictive value of structure prediction is 90.4% when considering the base pairs in the lowest free energy structure with pairing probability of 0.99 or above. Moreover, a strong correlation is found between the predicted melting temperatures of RNA sequences and the optimal growth temperatures of the host organism. This indicates that organisms that live at higher temperatures have evolved RNA sequences with higher melting temperatures.  相似文献   
275.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the 31P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. 2H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. 31P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, 31P and 2H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   
276.
Liu J  Deng Y  Zheng Q  Cheng CS  Kallenbach NR  Lu M 《Biochemistry》2006,45(51):15224-15231
Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between alpha helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of alpha-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete alpha-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 A resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.  相似文献   
277.
The root aphid Tetraneura nigriabdominalis (Sasaki) (Homoptera: Pemphigidae) is a pest of many Gramineae species; however, little is known about its biology and relationships with host plants. The objectives of this study were to quantify the effects of temperature on development, longevity, fecundity, and population growth of T. nigriabdominalis and to assess the effects of host plant on development of T. nigriabdominalis. The effects of temperature on performance of this root aphid were determined at 10, 15, 20, 25, 30, and 35 +/- 1 degrees C on rice roots, Oryza sativa L. Nymphal stages from birth to adult decreased from 46.3 d at 10 degrees C to 8.5 d at 30 degrees C. Aphid survival and development were lowest at 35 degrees C, and no aphid produced progeny at this temperature. Average adult longevity decreased from 23.3 d at 15 degrees C to 8.2 d at temperatures up to 35 degrees C. Average number of nymphs produced per female was highest at 25 degrees C; averaging near 30 nymphs per female, but it dropped to near zero at both 10 and 35 degrees C. The highest intrinsic rate of increase (r(m)) was 0.241 at 30 degrees C. Net reproductive rate (R(0)) ranged from 29.8 at 25 degrees C to 0.2 at 10 degrees C. The generation time (GT) decreased with increasing temperatures from 60.3 d at 10 degrees C to 13.8 d at 30 degrees C. In addition, root aphids reared at 30 degrees C on three host plants [O. sativa, Zea mays L. and Sorghum bicolor (L.) Moench] revealed that the developmental time of the nymphal stages averaged 6.9 d when reared on O. sativa and 10.7 d when reared on Z. mays. Comparison of the nitrogen content of the three host plants indicated that the root nitrogen content was highest in O. sativa. The effect of nitrogen content on aphid performance, however, is still not clear. Other factors, such as plant secondary chemistry, may play a role in affecting aphid performance.  相似文献   
278.
Lu C  Chen X  Xie Z  Lu T  Wang X  Ma J  Jing X 《Biomacromolecules》2006,7(6):1806-1810
A novel biodegradable amphiphilic block copolymer PLGG-PEG-PLGG bearing pendant glucose residues is successfully prepared by the coupling reaction of 3-(2-aminoethylthio)propyl-alpha-D-glucopyranoside with the pendant carboxyl groups of PLGG-PEG-PLGG in the presence of N,N'-carbonyldiimidazole. The polymer PLGG-PEG-PLGG, i.e., poly{(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}-block-poly(ethylene glycol)-block- poly{(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}, is prepared by ring-opening copolymerization of L-lactide (LLA) with (3s)-benzoxylcarbonylethylmorpholine-2,5-dione (BEMD) in the presence of dihydroxyl PEG with molecular weight of 2000 as macroinitiator and Sn(Oct)2 as catalyst, and then by catalytic hydrogenation. The glucose-grafted copolymer shows a lower degree of cytotoxicity to ECV-304 cells and improved specific recognition and binding with Concanavalin A (Con A). Therefore, this kind of glucose-grafted copolymer may find biomedical applications.  相似文献   
279.
280.
In the light of the steady increase of infections related to vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), the medicinal plant Magnolia officinalis was subjected to bioassay-directed fractionation, which led to the isolation of the known neolignans piperitylmagnolol (1), magnolol (2), and honokiol (3) from the MeOH extract. In broth-microdilution assays, 1-3 exhibited antibacterial activities against VRE and MRSA at minimum-inhibitory concentrations (MIC) in the range of 6.25-25 microg/ml, compound 1 being the most-potent antibiotic. The ratio of MBC/MIC (MBC = minimum bactericidal concentration) was < or = 2 for all compounds. The kinetics of the antibacterial action of 1 and 3 were studied by means of time-kill assays; both compounds were bactericidal against VRE and MRSA, their actions being time dependent, or both time and concentration dependent. Magnolol (2) was acetylated to magnolol monoacetate (4) and magnolol diacetate (5) (partial or full masking of the phenolic OH functions). The cytotoxic properties of 1-5 against human OVCAR-3 (ovarian adenocarcinoma), HepG2 (hepatocellular carcinoma), and HeLa (cervical epitheloid carcinoma) cell lines were evaluated. The CD50 values for compounds 1-3 were in the range of 3.3-13.3 microg/ml, derivatives 4 and 5 being much less potent. This study indicates that piperitylmagnolol (= 3-[(1S,6S)-6-isopropyl-3-methylcyclohex-2-enyl]-5,5'-di(prop-2-enyl)[1,1'-biphenyl]-2,2'-diol; 1) possesses both significant anti-VRE activity and moderate cytotoxicity against the above cancer cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号