首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   23篇
  2021年   8篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   15篇
  2014年   9篇
  2013年   11篇
  2012年   16篇
  2011年   12篇
  2010年   13篇
  2009年   8篇
  2008年   13篇
  2007年   11篇
  2006年   9篇
  2005年   10篇
  2004年   11篇
  2003年   8篇
  2002年   8篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   10篇
  1997年   7篇
  1996年   8篇
  1995年   7篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   6篇
  1989年   8篇
  1988年   8篇
  1987年   2篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1979年   2篇
  1978年   2篇
  1977年   9篇
  1976年   6篇
  1975年   5篇
  1974年   2篇
  1972年   3篇
  1970年   1篇
  1968年   2篇
  1967年   2篇
  1953年   1篇
排序方式: 共有329条查询结果,搜索用时 203 毫秒
21.
22.
23.
The formation and maintenance of microtubules requires their polymerisation, but little is known about how this polymerisation is regulated in cells. Focussing on the essential microtubule bundles in axons of Drosophila and Xenopus neurons, we show that the plus-end scaffold Eb1, the polymerase XMAP215/Msps and the lattice-binder Tau co-operate interdependently to promote microtubule polymerisation and bundle organisation during axon development and maintenance. Eb1 and XMAP215/Msps promote each other’s localisation at polymerising microtubule plus-ends. Tau outcompetes Eb1-binding along microtubule lattices, thus preventing depletion of Eb1 tip pools. The three factors genetically interact and show shared mutant phenotypes: reductions in axon growth, comet sizes, comet numbers and comet velocities, as well as prominent deterioration of parallel microtubule bundles into disorganised curled conformations. This microtubule curling is caused by Eb1 plus-end depletion which impairs spectraplakin-mediated guidance of extending microtubules into parallel bundles. Our demonstration that Eb1, XMAP215/Msps and Tau co-operate during the regulation of microtubule polymerisation and bundle organisation, offers new conceptual explanations for developmental and degenerative axon pathologies.  相似文献   
24.
Virus removal from a high purity factor IX, Replenine®-VF, by filtration using a Planova 15N filter has been investigated. A wide range of relevant and model enveloped and non-enveloped viruses, of various sizes, were effectively removed by this procedure. Virus removal was confirmed to be effective when different batches of filter were challenged with poliovirus-1. It was confirmed that intentionally modified filters that failed the leakage test had completely lost the ability to remove virus, thus confirming that this test demonstrates gross filter failure. In the case of the more sensitive integrity test based on gold particle removal, it was found that a pre-wash step was not essential. Planova filters that had been modified by sodium hydroxide treatment to make them more permeable, and filters manufactured with varying pore-sizes over the range of 15–35 nm, were tested. The integrity test value that resulted in the removal of >4 log10 of poliovirus-1 from the product correlated with that recommended by the filter manufacturer. Virus removal from the product was not influenced by filter load mass, flow-rate or pressure. These studies confirm the robustness of this filtration procedure and allow suitable process limits to be set for this manufacturing step.  相似文献   
25.
Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.  相似文献   
26.
Genetic and functional studies indicate that common components of the bone morphogenetic protein (BMP) signaling pathway play critical roles in regulating vascular development in the embryo and in promoting vascular homeostasis and disease in the adult. However, discrepancies between in vitro and in vivo findings and distinct functional properties of the BMP signaling pathway in different vascular beds, have led to controversies in the field that have been difficult to reconcile. This review attempts to clarify some of these issues by providing an up to date overview of the biology and genetics of BMP signaling relevant to the intact vasculature.  相似文献   
27.
28.
29.

Background  

Our objective was to quantify and compare the extent of synchronization of the spatial-temporal myometrial activity over the human uterus before and during a contraction using transabdominal magnetomyographic (MMG) recordings. Synchronization can be an important indicator for the quantification of uterine contractions.  相似文献   
30.
The Brf1 subunit of TFIIIB plays an important role in recruiting the TATA-binding protein (TBP) to the up-stream region of genes transcribed by RNA polymerase III. When TBP is not bound to promoters, it sequesters its DNA binding domain through dimerization. Promoter assembly factors therefore might be required to dissociate TBP into productively binding monomers. Here we show that Saccharomyces cerevisiae Brf1 induces TBP dimers to dissociate. The high affinity TBP binding domain of Brf1 is not sufficient to promote TBP dimer dissociation but in addition requires the TFIIB homology domain of Brf1. A model is proposed to explain how two distinct functional domains of Brf1 work in concert to dissociate TBP into monomers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号